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INTRODUCTION

Almost every statistician has used simple linear regression
many times; it probably is the most well-used statistical procedure.
If there is more than one dependent variable present, we enter into :
the realm of multivariate regression. In both univariate and f
multivariate regression, we can estimate regression coefficients,
find confidence intervals for the regression coefficients, and test
whether the regression coefficients are equal tc a known matrix.

However another kind of problem exists in muitivariate regression,

Qﬂ? but does not exist in univariate regression. In multivariate j
regression, the regression coefficient matrix may not be of full
row rank, i.e., there may exist unknown linear restrictions on the
regression coefficient matrix. We may want to estimate the
regression coefficient matrix and the unknown linear restrictions
under the hynothesis that the linear restrictions do exist. For
instance, when we estimate one linear restriction, we usually are
trying to find the linear combination of the elements of each
column of the regression coefficient matrix which equal some
unknown quantity.

We now define precisely the model and hypothesis to which we

have been referring:
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where X; is a p-dimensional vector of observations, = is the unknown
pxk (k > p) regression coefficient matrix, fi is a k-dimensional

vector of dependent variables, €5 is a p-dimensional error vector,

B is a rxp(r<p) matrix of linear restrictions, o is an unknown rxs(s<r)
matrix which provides a basis for thé space spanned by the columns

of Bz, and a is a known sxk matrix. The matrix form of the above

equations is '

(0.0.1) X = =F+E,
(0.0.2) Bz = ca,
where

X =

= ("1"‘2""”‘1\1)'

E it it uent

m
!

= (e1.e2,...,eN).

T. W. Anderson [1951a] found the maximum likelihood estimators
(MLE's) of the parameters B, =, and I when a is the zero matrix.
Later, Villegas [1961] found the MLE's of B, =, £, and a in the
above model when F is the design matrix associated with the MANOVA
model and when B is a 1xp matrix. Villegas's model can be called
the single linear functional relationship model with replications
(Moran [1971], Madansky [1959]). When F is the design matrix

associated with the MANOVA model, each column of = is the mean

kil




vector for a group of observations. In many cases the number of
groups increases when the sample size increases. This situation

is itself a special case of the more general case where the number .
of parameters increases as the sample size increases. Villegas
does discuss the consistency of his estimators when the number of
groups increases with the sample size.

In Chapter 1, we estimate the parameters in the model and
hypothesis specified by (0.0.1) and (0.0.2). We also give several
special cases of our model, including several models which resemble
a model discussed by Gleser and Watson [1973]. Our discussion of
the consistency of the estimators is directed mainly to cases when
the number of parameters does not stay fixed as the sample size
increases.

One of the biggest advantages of getting maximum 1ikelihood
estimators is that we can usually use these estimators in deriving
likelihood ratio tests. For many multivariate problems, the exact
distribution of the likelihood ratio test statistic is exceedingly
complicated. However the asymptotic distribution of -2 log A, where
A is the likelihocd ratio test statistic is;usua11y a chi-square
distribution. In Chapter 2, we use the estimators we derived in

Chapter 1 to get the likelihood ratio test statistic for testing
HO: Bz = aa versus H]: Bz # aa.
Since the exact distribution of this statistic is intractable, we

find its asymptotic distribution. Our resulis show that the

asymptotic distribution of the test statistic depends on how the




’ number of parameters increases with the sample size. It is noteworthy ¢ 1

that in several cases, -2 log A,where A is the likelihood ratio test

statistic,does not have an asymptotic chi-square distribution.

The basic model discussed in the first two chapters is commonly
called the classical multivariate linear regression model. Another
type of linear model, which has been discussed in the literature,
is the "growth curves" model (Cochran and Bliss [1948], Shrikhande
[1954], and Gleser and Olkin [1964, 1969]). In this model we observe

N independent px1 column vectors X i=1,2,...,N, which satisfy

. = F=te.
X; F e,

where F is a known pxq matrix, = is an unknown g-dimensional

vector and e; is a p-dimensional error vector. This model has
° been generalized by Gleser and Olkin [1966] in their discussion !

of k sample growth curves.

A1l these models, the classical multivariate linear model

and the growth curves models, can be generalized tc a model first

discussed by Potthoff and Roy [1964] and later by Rao [1965] and

Gleser and Olkin [1969]. We may write the model which we refer to

as the Potthoff-Roy model in the following way:
(0-0.3) x . F] .‘-:F2+E L

where X is a cxN matrix of observations, F1 and F2 are known
cxp (p < c) and mxN (m < N) matrices respectively, = is an unknown

pxm matrix, and E is a cxN error matrix. Each column of E is

distributed independently with mean vector 0 and unknown covariance

0 matrix L.




Potthoff and Roy [1964] gave ad hoc tests of the hypothesis

(0.0.4) FazFy = £

where F3,F4 and £y are known rxp (r <p), mxk (k <m), and rxk
matrices respectively. F] and F4 are assumed to have full column
rank, and F2 and F3 are assumed to have full row rank. Rao [1965]
found the conditional likelihood ratio test of the hypothesis
stated above, and Gleser and Olkin [1969] showed that Rao's condi-
tional likelihood ratio test is actually the unconditional
Tikelihood ratio test.

In Chapter 3, we work with the Potthoff-Roy model (0.0.3) and
estimate parameters under a hypothesis similar to (0.0.4). The
hypothesis we discuss is concerned with unknown linear restrictions
on the regression coefficient matrix. This hypothesis can be

written the following way:
(0.0.5) U15F4 = ab,

where U] is an unknown rxp (r < p) matrix, F4 is a known mxk
matrix, a is an unknown rxs matrix, and b is a known sxk matrix.

We assume that the unknown covariance matrfx Z has the form 02-1c
where 02 is an unknown. In Chapter 3 we reduce the Potthoff-Roy
model and the above hypothesis (0.0.5) to a canonical form. We
also find the MLE's of the parameters in the general model (0.0.3),
(0.0.5) and in the reduced model. As in Chapter 1, we discuss

consistency of the estimators when the number of parameters is

allowed to increase with the sample size.




Chapter 4 bears the same relationship to Chapter 3 that
Chapter 2 bears to Chapter 1. In Chapter 4, we derive the

likelihood ratio test statistic for testing
Ho: U]EF4 = ab versus H]: U]sF4 # ab.
We find the asymptotic distributions of the likelihood ratio test

statistic; these depend on how the number of parameters increases

with the sample size. In several cases, the asymptotic distribution

is not the usual chi-square distribution.




CHAPTER I
ESTIMATION COF UNKNOWN LINEAR RESTRICTIONS

ON THE PARAMETERS OF THE CLASSICAL
MULTIVARIATE LINEAR REGRESSION MODEL

1.0 Introduction

In this chapter, we discuss estimation of the parameters of
the classical multivariate linear regression model (Anderson [1958;
Chapter 8]) when an hypothesis concerned with unknown linear restric-
tions on the parameters is assumed to be true. Section 1.1 contains
derivation of the maximum likelihood estimators (MLE's) of the
parameters; while Section 1.2 derives consistency properties of the
MLE's. We show that some of the estimators are not consistent when
the number of parameters in the model increases with the sample size.
Several special cases of our model are discussed in Section 1.3
including the multivariate iinear functional model (Madansky [1959],
Moran [1971], Sprent [1969], Viilegas [1961]), and models proposed
by Kristoff [1973] and Rao [1973]. 1In all of our special cases, the

independent variables in the regression model are dummy variables.

1.1 Maximum Likelihood Estimation

Let our model be:

(1.1.1) x, =z f, + e,




where each X; is a p-dimensional vector of dependent variables, each
fi is a k-dimensional vector of independent variables or covariates
(k > p), = is an unknown pxk parameter matrix of regression coeffi-
cients, and toe ei's are p-dimensional vectors of errors.

We assume that the ei's are statistically independent of one
another, and have the same normal distribution with mean vector 0
and unknown covariance matrix L. We will be finding the maximum

likelihood estimators (MLE) of £, = and two other matrices B and o

which satisfy,
1.3.2) B == aa,

where a is a known sxk matrix (s < k) (k-s > p), B is an unknown rxp
(r<p) matrix and o is an unknown rxs(s<r) matrix. We are concerned with
cases in which either a has full row rank or a is the zero matrix,
i.e.,we are testing B = = 0. It shculd be noted that if a is not
the zero matrix and is not full row rank, we can reparametrize so
that our resulting matrix will be full row rank. We derive the
MLE's of the parameters when a is full row rank. Since the proof
is similar (actually easier) when a is the zero matrix, we will
merely state the results in this case. In all of oui special cases
(see Section 1.3), a = (1,1,...,1) or a is the zero matrix.

Anderson [1951a] considered the above problem when a is the
zero matrix. His derivation of the MLE's uses Lagrange multipliers
and differentiation of the likelihood function. A derivation, similar
to the one we give when a hasfull row rank, could be used as an
alternative method of obtaining and verifying the MLE's in Anderson's

problem. We believe that that derivation would be simpler and more
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intuitive than Anderson’s. Since we would not employ differentiation,

we would not have to worry about saddle points, etc. In his paper,
Anderson [1951a] also gives methods of generating confidence intervals
and likelihood ratio tests of various hypotheses.

Our computations will be simplified greatly if we write (1.1.1)

in the following way:

(1.1.3) X

= F +E,
where

x = (xlsxz,-'-»XN):

SR 5 SRR

el N)’

E = (e],ez,...,eN).

We will call X the observation matrix, F the covariate matrix and

E the error matrix. We will assume that F and a have full row rank.
Maximizing the likelihood with respect to many parameters can be

done in several ways. One way is to: 1) fix one of the parameters

(i.e. treat one of the parameters as fixed or given); 2) maximize

the likelihood with respect to the other parameters {note: the derived

MLE's of the other parameters will be functions of the fixed parameter)

3) substitute the derived MLE's of the other parameters back into the

likelihood; and finally 4) maximize the 1ikelihood with respect to

the parameter that had been fixed. We will be following this method,

with B treated as the fixed parameter.

-~




Part I. B fixed or given

We now transform X into a form in which the proper estimators
of the parameters are easy to see. Let C be a p-rxp matrix which
satisfies CC'= Ip-r and CB' = 0. Let
{1.1.49) Z = =

Each column of Z is distributed independently with a p-dimensional

normal distribution having covariance matrix

q) = — : :
¢2] ¢22 CZB" CZC
The mean of Z is
B=F acaF
E(Z) = =
C=F C=F
Let
Y n Y2 Zy
-
Y = = = (F'(FF*)"=,L),
Y2 Y21 Y2 Zy

where L is a NxN-k matrix which satisfies L'L = Iy.g and L'F = 0.

Note that
z )
E(Y) = E[(Z;><r'<w')“:f,u],
aaF 2
&N IRENEFC) L)
CzF

2

aa(FF')E 0
-Q;UFW% 0
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’ Since (F'(FF')-%,L) is an orthogonal matrix, each column of Y is
independently normally distributed with covariance matrix y.
We now have transformed the data X into a form in which it
is easy to find the estimators. Let us write the joint distribution

of Y in the following way:
= [
(].].5) f(Y) = f(Yz]'Y]])f(Y]] 22]Y]2)f(¥]2)

where f(Y21|Y]]) indicates the conditional density of Y2] given Y]],

f(Y]]) indicates the marginal density of Y,;, etc. Since the
columns of Y are independent normally distributed random variables,
all of the densities in (1.1.5) are normal densities.

The parameters in our transformed model are «,Cz, and ¢. An

equivalent parametrization is

) A N L PR PSP
We note that in (1.1.5) only f(Y21)Y11) dépends on C=, and only
f(Y]]) and f(Yz]IY]]) depend on « in their parameterizations.
Thus, we begin by finding the MLE of C= assuming that

a]wZ](w;}), Uypo and Voo 1 ATE fixed. We know that

a3
s i - = '

: TR 1 o B vgp 1 (Vo101 ) (Ypy-upy) )

, 211'11 K72, (BT k]2 ;

; Iwzz ]l (2

i 1

s (1.1.6) < . 5 s

4 lwzz.]lk/Z(zﬂ)(p r)k/d

1 % '] ' %
Where U2] = E(Yz]lez) = CE(FF )” + ¢21w]](Y]]-Oa(FF )ﬁ).

If we pick C= so that

1

~

~ P -
(].].7) YZ] b C’: (FF')” oE w2](W]])(Y]] “a(Fr ) ) = UZ],
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D then it is clear that f(YmIYZZ) attains its maximum (1.1.6). We
may rewrite (1.1.5) to get

1
Yoo 1177 (21)
22.1
with equality when (1.1.7) holds.
We next maximize the right-hand side of (1.1.8) with respect to

a, treating w2]w{},w]],w22.] as fixed. We know that

: -3 try] L0 -aa(FF)3) (Y, -aa(FF)2) ]

flY.:) = e

Using the theory of multivariate regression, we get

-1
=& tryy (Y MY ),
1 2 ARSI
(1.1.9) f(y )_<_ e

11 ,w”!k/Z(Z")Y‘k/Z

3 o 3
where M = I-(FF')% a'(aFF'a") 1 a(FF')=, Equality in (1.1.9) occurs

only when

i (1.1.10) @ = Y (FF)% a'(aFFar) ™).

Substituting (1.1.9) into (1.1.8), we get

s troj (Y %)
(0.1.11) . £(¥) < £(Y55[Y5)-F(Y,,).
,w]]'k/Z(zﬂ)pk/Zszz.],k/2 z2' "2 12

We now maximize the right-hand side of (1.1.11) with respect to
Y13 keeping Voo 1 and wZ](w]])'] fixed. Since

, 3 |
Bty oY,

P .
f(¥y,) = gy, [TRI72 3 TRRTF7Z




(1.1.11) can be written

-3 e (YY)

f(y) < - F(¥oni¥inls
IN/2(2W)(pk+(N E)r)/zlwzz'],k/z A2 2

2%

where f(Y22[Y]2) does not depend on ¥77- Using Lemma 3.2.2 of
Anderson [1958], we have

-2 Nr

e F(YoolYy,)
(1.1.12)  £(Y) < 22 12 p
H’] ,N/Z( 7T)(lilk“‘("i'ﬂ"')/zl11)22 1ik/2
where &]] = (Yp,¥5, * YqqMY3 /N,

Finally, we maximize the right-hand side of (1.1.12) with

respect to ¢2](¢]])'] and Y RE We know that

.‘] i’ ,'1 '
2al¥5) e'i trigy 1 (Y 22'V21¢11 Y120 (Ya5-427417Y72) :

IN/Z( >(N-k)(p—r7/2

f(yY

1995 11

-] 7/ ] ] -
PRy ISP O T PG SPAS PO POATPY

e s
(1.1.13) < !¢22 | /7(??)(N-k)(p-r)/2

A

with equality only when
boa (e )1 = YooY (YY)
¥21'¥11 oAl atl P b LI

Using Lemma 3.2.2 of Anderson [1958],we have

F¥pplY1p) e Np-r)

(].].]4) k/2 —_ IN/Z(Z )(N k) p r)/2 ’

192211

\7781




o -] ' \ -1 [
V22.1 = N (Vo2(I-Y1,0Y1,5Y{5) Y20 Y50).

Combining (1.1.12) through (1.1.14), we get

e

(1.1.15)  f(Y) < ! a2 ip

= (2} PR 1, 1IYE

There will be equality in (1.1.15) if
= =0y (FF) 3 - (uyqu7 )0 (v satrr) B 2(rFe) 2
= TR SR T :
& = Y (FF)% a'(aFF'a’) ],
s ) = oYt
210 A P v U

~

2 = 2\
n T % (YIZYiZ L Y]](Ik'(FF')2 a'(aFf'a’) ] a(FF')‘)Y]]),

o -] ] 1 ‘] ]
V221 = 8 (MoalInoY12(Y12Y10) Yi2)Y30)-

Now we go backwards and express = and & in terms of X. After a

little simplification, using the facts that

(@) = (88" e,

c'c= 1-8'(88")"s,

LL} = Iy = FY{RETTTF,
we obtain
(1.1.16) = = XA - X(I,-AF)X'B' (BX(I-AF)X'B") 'BX(A-G),
(1.1.17) = BX(F'a'(aFF'a’')" 1),

L.A‘..__m.-..__.._pmm.... PP

SRR~ S
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@ where

(1.1.18) A = F'(FF")7,

G=F'a'(aFF'a’') a. |

We can also go backwards and find £. When we do this, we get
2= N(X-5F) (X-5F) .

We may summarize our results so far in the following theorem.

Theorem 1.1.1. When B is fixed, the MLE of a, =, and £ in the model

given by (1.1.2) and (1.1.3) are

BXF'a'(aFF'a')"!,

R)>
"

"o
n

XA-X(IN-AF)XB'(BX(IN-AF)X'B')-]BX(A-G),

N~V (X-2F) (X-2F),

(3e b
"

@ where A and G are given by (1.1.18).

Part II. Substitution of parameters back into the likelihood and
maximization with respect to B.

If we substitute the estimators of a, =, & given in Theorem 1.1.1
(note: they are functions of B) into the likelihood for X, we find
that

(1.1.19)  max Tog f(X) = - + pN log 27- + N log |#] - X pN. f
Cz,a,y 2 H 2 i

Maximizing (1.1.19) with respect to B is equivalent to minimizing |Z|

with respect to B. After simplification we get

= |BTB'
(1.1.20) lz] = EE '”"1Bwe K

0 where i




£1.7.21) W =X(IN'F'(FF')-]F)X',

(1.1.22) T =X(I-F'a'(aFF'a’) TaF)x".

Note that in terms of MANOVA concepts, W can be thought of as the
within covariance matrix and T as the total covariance matrix.

gy
Let U = N % BW=. Then (1.1.20) becomes

2 -2
o B JUW™2 TW2 U |
(1.1.23) 3] = W gy :

For purposes of minimizing (1.1.23), we might as well assume that
uw' = Ir’ for if UU' doesn't equal the identity matrix, there exists
an invertible matrix H such that U* = HU also minimizes (1.1.23)
*! =
and U*U Ir'
If WU = Ir’ Theorem 10, page 129 of Bellman [1970] tells us

that the minimum value of £ is

e eyt s S
0.0.20) 8] =5 Wl -0 hp 2o dp s

il

where A, is the ith largest eigenvalue of W2 TWE Letr bea
matrix whose columns are the eigenvectors associated with the r
smallest eigenvalues of W2 Tw'i. If we choose U to be T, then
the right-hand side of (1.1.23) achieves the minimum value of |§}

as seen in (1.1.24). Thus, if we let
b
(1.1.25) B = N2 W2,

then the likelihood function is maximized. It is easy to show that

1

the columns of B' are themselves eignevectors of W ' T corresponding

to the r smallest eigenvalues of Wl T,




We summarize our results in the following theorem.

Theorem 1.1.2. The MLE of B, a, =, and £ in the model given by

(1.1.2) and (1.1.3) assuming a and F are full row rank are:

& = BXF'a'(aFF'a’)™),
2= x(F (FF') ") -wB(BWE ") "V (BX(F' (FF') '-F'a* (aFF'a’) 1a)),
$=NHx - )X - 5F),

where

W =X(Iy-F* (FF*)TR)x,
T =X(Iy-F'a'(aFF'a’) " 'aF)X',

and the columns of B' are the eigenvectors corresponding to the r

1

smallest eigenvalues of W ' T.

Remark 1. If we multiply £ on the right by any invertible matrix,
the resulting matrix also maximizes the likelihood since if B* = Hé,

[H| # 0, then

1B*TB*'| _ [MBTB'H'! _ [H|.IBTB'[-[H'| _ |BTB'|
[B*WB*'|  |HBWB'H'|  |H|-|BWB'|-|H'|" |BWB'|

Remark II._ A1l matrices which maximize the likelihood are of the

form HB for some invertible H. We will not prove this, since a proof

of the assertion is straightforward.

Remark III. We have been assuming that Fhas full row rank. We now

demonstrate how to reparametrize so that the results in Theorem 1.1.2

can be applied when F is notof full row rank. Assume c(c<k) is the
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‘ rank of F, and c-s > p. Let
- DO
The right-hand side of (1.1.26) is the Eckart-Young decomposition
where U and (r]rz) are orthogonal matrices and D is a diagonal 5
invertible cxc matrix. Now
=F = =(r,7,) (O,
= (EF])(D,O)Ua i
= =%(D,0)U = =*F*, !
where =* = sr] and F* = (D,0)U. Since F* is full row rank, we may
use Theorem 1.1.2 to get the MLE's of the parameters. If =* is the “

MLE of =*, we have

=* = =T,

1
rl

*,p) (N,
)(rz)

">

where P is any finite pxk-c matrix. Usually when F is not of full
row rank there are restrictions on =. We can pick P so that 2
satisfies those restrictions.

We now state a theorem which gives us the MLE's for our model

when a is the zero matrix:

Theorem 1.1.3. The MLE of B, =, and £ in the model given by

(1.1.2) and (1.1.3) when a is the zero matrix,i.e.,(1.1.2) becomes - ]

B= = 0 are:
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">
n

X(F'(FF')™Y) - wB(BWE") T (BX(F' (FF')™ ),

z = NV (X-2F)(X-3F)",
where

W= X(1-Fr(FE) TR,

T=XX',

and the columns of B' are the eigenvectors corresponding to the

.

r smallest eigenvalues of W~
Let us now consider the model of Theorem 1.1.2 with one change -

namely, instead of assuming that each ey is independently normally

distributed with common covariance matrix I, we now allow the e:'s

to be jointly normally distributed with mean vector 0 and

(1.).22) cov(ei,ej) = kij' e

where K = (kij) is a known invertible matrix. The maximum likelihood
estimators of a«, B, =, and ¢ are easy to compute, using Theorem 1.1.2

and the following lemma:

Lemma 1. Let Z = XK'2 (X comes from our new model), then

2l

=
E(Z) = :FK'2 and each colunn of Z is independent with a p-dimensional

normal distribution having covariance matrix £.

Proof. Since Z is a linear combination of normally distributed

random variables, it is itself normally distributed. Further,

b}

E(Z) = E(XK'®) = (E(X))K'2 = =FK™?,

Let (mij) = K2, Then
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° cov(ZaZé) E(Za-Vu)(ZB-VB)' i

i

E( Z(x.-:f.)ma1m8j(x.-zf.)'
e e
z ma1mBJE(xi-Efi)(x.-;f.)
. 4" %
1J
ai Bj, _
Im 'm kij z

= GGB-Z,

where % is the Kronecker Delta function. Q.E.D.

B
If we transform X as prescribed in Lemma 1, the resulting
model exactly corresponds to the model in Theorem 1.1.2. We therefore

have the following result.

Theorem 1.1.4. The maximum likelihood estimators in the model

given by (1.1.2) and (1.1.3) with the following change,

4
3
k
° cov(ei-ej) = kij'z’ |
where (kij) = K is known, are:
o s ‘] [P “-‘ oS e '1
a = BX(K 'F'a')(aFK 'F'a")™',
S xR (R TEY) T - we (8w ) (8-
ke e ey kTR (ark T e ety e l),
£ = NT(X-2F)(X-5F) ",
where
W= x(IN-K"F'(FK'1F')‘7FK'1)X',
T= X(IN—K°]F'a'(aFK']F'a')'1aFK'])X',

the columns of B' are the r eigenvectors associated with the r
1.

smallest eigenvalues of W~




1.2 Consistency of the Estimators

As the number of observations gets large, it is important to
know what our estimators converge to. In most statistical problems
the number of parameters stays fixed as the sample size increases.
However, in this section we will be finding out what our estimators
from Theorem 1.1.2 converge to when the number k of columns of =
is allowed to increase with the sample size. The elements of
our = matrix are what Neyman and Scott [1948] have called
"incidental parameters". When there are incidental parameters
present, some estimators (as in our case) may turn out to be
inconsistent. We will not discuss the consistency of the estimators
in Theorem 1.1.3 or Theorem 1.1.4 since it is clear that we have
analagous results. In our discussion, p (the dimension of the
dependent variable), r (the row rank of B) and s (the column rank

of a) are assumed to be fixed. It is evident that

t = lim N

N->oo

is a measure of how fast the number of parameters increases with the
sampie size, N. We will assume that t is é]ways greater than zero
and less than or equal to one. If the number of parameters stays
fixed, t will equal one. We will be concerned with the consistency
of é, ;, and 5. We will first discuss the consistency of é and &.

In order to make a discussion of the consistency of é,;
meaningful, we will have to place restrictions on B and é which

will make these matrices unique. It should be remembered that if

B,a maximize the likelihood, then so do HB, Hu where H is an

B e e

- o
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invertible matrix. In fact all MLE of B,x will be of the form

Hé, Ha for some invertible matrix H. Similarly (B,a) satisfy
(1.2.1) Bz = ca,

if and only if HB,Ha satisfy HB:= = Ho, where H is an invertible
matrix.

Let B,a be a pair of matrices which satisfy (1.2.1). By
requiring B to satisfy a number of restrictions, (B,a) will be the
unique matrices which satisfy (1.2.71). We will show that if é and a
are MLE of B and «, and i% é satisfies the same restrictions as B,
then é,& converge almost surely to B,a. We will be showing the
above for only one particular set of restrictions. However, it is
clear that if one set of MLE (é],&]) converge almost surely to
B],a], where é] and B] satisfy one group of restrictions, then
any other set of MLE 62’;2 will converge almost surely to 82’“2’
where é2 and 82 satisfy another group of restrictions, provided
the respective restrictions make B] and 82 unique.

Let B,a be a set of matrices which satisfy (1.2.1) and let
3811, = B3 (B1.8,)= B5'(B),

-1

a* = 82 iy

B*_

1
—
{ve)

where B = (81’82)’ By: rxp-r, and B,: rxr. B* is the only matrix
with its last r columns being the identity which satisfies (1.2.1).
Similarly, if é],aare maximum likelihood estimators, we can generate

~

another set of maximum likelihood estimators B*,a* where é* has the

identity matrix as its last r columns:
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B* = B;'(B,,B,) = 85'8
) 2 (BpBy) = 856,
: a* = Bj'a.
Hence, B* is the only MLE of B which has the identity for its
last r columns. We will show that é*,&* converge almost surely
to B*,a*.
Lemma 1. If N-k » « then (N-k)~]w goes almost surely to Z.
Proof. Recall that
W= X(I-F' (FF)TTR)XY,
= (=F+E)(1-F' (FF) TTF)(=F + E),
= E(1-F' (FF)TTF)E".
Each column of E has an independent normal distribution with mean
vector 0 and covariance matrix £. By Theorem 4.3.2 in Anderson
| [1958], W is distributed the same way as
N-k
L e
where u; are independent N(0,z) random variables. We can conclude
that o Nk
(N-K)"" 3w g
] i=1
: converges almost surely to Z. Therefore (N-k}'](w) goes almost
surely to L. Q. E.Ds
Lemma 2. Let 2925 be independent identically distributed random
variables with means 0 and common finite variances. Let bn m be any




array of real numbers m <n n = 1,2,... satisfying

. 92
A
then n™2 ] b -z goes to 0 almost surely.
m=1

Proof. The proof is in Chow [1966]. Q.E.D.

Lemma 3. Assume that

R = Tim N7 EF(IN-F'a'(aFF'a‘)']aF)F'z'

N>

exists and is finite, then

frae) W E(IN-F'a'(aFF'a')']aF)F':'
goes almost surely to zero.

Proof. Consider the i,jth element of (1.2.2). That element is the

X

product of the ith row of N7 E and the jth column of

(1.2.3) Ni(IN-F'a'(aFF'a')']aF)F'z'.

Each element in the ith row of E is independent with mean 0 and
common variance. The sum of the squares of the elements in the

jth column of (1.2.3) is the j,jth element of
i Hia b N -1 ]
N"" =F(I\-F'a'(aFF'a') "aF)F'=".

By our hypothesis, this element converges to something finite as N
goes to infinity. By Lemma 2, the i,jth element of (1.2.2) goes

almost surely to zero. Q.E.Ds




Lemma 4. Assume that R (as defined in Lemma 3) exists and is finite, then

NIr goes almost surely to R+:.

Proof. Recall that

N7 = NI -Fra (aFFrat) TTaR)xe, |
) i
= NV (=F+E) (1, -Fra" (aFF'a") " TaF) (sF4E)
|
(1.2.4) = N']SF(IN-F'a'(aFF'a')‘]aF)F'z’+N']E(IN-F'a'(aFF'a')']aF)F'5'+

1

NV =F(1-Frat(aFFra’) TaR)E N (1 -Fra’ (aFFat) T TaF)E".

[}

E(IN

By our hypothesis the first term in (1.2.4) converges to R. By
Lemma 3, the second and third terms go almost surely to zero. If
we use Theorem 4.3.2 in Anderson [1958], we find that the fourth term
in (1.2.4) has the same distribution as
N-s
5

i L
i=1 AT

where uj has a normal distribution with mean vector 0 and covariance

matrix . u; and Uy are independent if i # j. We know that
-1 N-s
(N-s) ] uau; goes almost surely to %. Since s is fixed as N
i=1
1

goes to infinity we have that N~ E(IN-F‘a'(aFF’a')'IaF)E' S
Using all of the above arguments, we have N']T goes almost surely

to Rt:. (eED,

Lemma 5. The columns of B*' are eigenvectors of Ip-z']R corresponding

to eigenvalue one.

Proof. We know that for every N




NV=F (1 -F'a’ (aFF a’) TaF)F = e

1
o

NV=F(I,-F'a’ (aFF'a’) TaF)Flataxt =

Because of the above RB*' = 0. We therefore have

(Ip-z"R)B*' = B*', Q.E.D.

Theorem 1.2.1. Under the assumptions of Lemma 4 and assuming R is

of rank p-r, B* is a strongly consistent estimator of é*.

Proof. By Lemma 1, we have (N-k)’1w 8;5- 5. By Lemma 4,

NIT 35S peg, Combining these statements we get
(- T 2350 27 eR) = 1R,

Since lim BﬁK =t > 0, we have

N

WoI(T) 8sS- (1/t)(1p+z'7a).

Since the eigenvalues of a matrix are continuous functions of the
elements of that matrix, the eigenvalues of w'](T) coverge almost
surely to the eigenvalues of 1/t(Ip+E-TR).' Since R is positive
semidefinite of rank p-r and £ is positive definite, the smallest
eigenvalue of 1/t(I +Z-}R) is 1/t. It has multiplicity r. The

p
r smallest eigenvalues of W’](T) must go almost surely to 1/t.

Let éﬁ be the estimator of B* if we have N observations. Let éN be

the estimator given in Theorem 1.1.2 (éN satisfies N']

BNNBN = Ir)

used to generate éﬁ, i.e.,

e g
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s » (81275 ~(2)"V ~(1)a el
) BY = (Br(qz) Br(q])’lr) = 8&2) (Blgl)’Bl(f)) e gl

s = (pl1) p(2) S -1
where BN = (BN ,BN ). Because N BNWBN = Ir and N 'W converges
almost surely to t-I, BN is bounded almost surely. Let us pick
any subsequence of éN' Since éN is almost surely bounded, there
must exist a subsequence of this subsequence which converges. Let

~

B denote the convergent subsequence. Let C be defined by
N

limB. = C.
Now N

Every column of C' is the limit of a sequence of eigenvectors of

w'](T) associated with an eigenvalue which goes almost surely to 1/t.
Since w'](T) converges almost surely to 1/t (I+z']R),each column of
C must equal some eigenvector of 1/t(I+Z']R) associated with
eigenvalue 1/t. Since
: -1; s -
Yim €x,) B {W)B: = tCIC* =1,
Hhal N ™ LY P
C is of full row rank. C must span the space of eigenvectors of
(1/t)(I+z']R) associated with 1/t. By Lemma 5, B* also spans this
space. Therefore there exists an invertible matrix V such that
(27"
! B* = (B B\'/,1) = VC.
* 17 ¢ = (¢{M c@) v must equat (¢{2))"T and

pr = ({2 e,
Let ||A|| denote the Tlargest value of any element in A. We

know that
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18 -+11 = 11828, -(c@) Ty,
N N N

18x B[] < (1N TE, -8, 1)+ 1), @) ey,
N N N N N
(1.2:5) : ; A
8% -B*1] < |18, )1 11BENY @)y o 1)y 118, -cl).
N N N N

The first term on the right-hand side of (1.2.5) is arbitrarily small

since |[§n || is almost surely bounded and én differs from C by an
N N
arbitrarily small amount when N is large. The second term vanishes

since (0(2))-1 is bounded'and éﬂ goes almost surely to C. We

B N
therefore have that B; goes almost surely to B*. We have shown that

N.
for any subsequence of B¥, there exists a subsequence of that
subsequence which converges to B* almost surely. é* must converge

almost surely to B*, Q.E.D.

Theorem 1.2.2. If N(aFF'a')'] converges to a matrix with all

elements finite then o* is a strongly consistent estimate of a*.

Proof. Note that

B*XF'a'(aFF'a')”),

*
n

ﬁ*(zF+E)(F'a'(aFF'a')-]),

(1.2.6) B*=FF'a'(aFF'a') 4B*E(F'a' (aFF'a’)"".

Since B* goes almost surely to B*, the first term on the right of

(1.2.6) goes almost surely to

B* = FF'a'(aFF'a’)”) = o*aFF'a'(aFF'a’)”) = 4%,




By applying Lemma 2 in a way similar to what we did in Lemma 3,

we know that N'](aFF'a')'] converging to a finite matrix implies
that E F'a'(aFF'a')'] goes almost surely to zero. We can conclude
-1

that é*EF'a'(aFF'a') converges almost surely to zero. Q.E.D.

We now must discuss the consistency of E. It should be noted
that the MLE's of = and £ are unique; they do not depend on the
choice of MLE of B and a. Because of this, we will use B as the

MLE of B and ;* as the MLE of a«. We have seen that

N~V (X-2F) (X-2F) ',

™
n

NVOX-XF (FF') ~TR+wB*(B*WB* ) T (B*X(F' (FF)"'F -

F'a'(aFF'a') aF)-
(X-XF* (FF*) " TF+uB*(Bxug*") ™1 (BX(F* (FF*)TF -

F‘a'(aFF‘a')']aF)'.

After a little simplification which uses the definitions of W and T,

we get
£ = N WaNTTWB* (B*WB* ' )~ 8% (T-W)B*" (B*WB* ') TB* "W,

From our previous lemmas and theorems we know that

., a.S. ~ @S,

N W > L, B =B,
1. a.s.

N1l = K, RB*' = 0.

Using the above we have
xS 3
S t-z+zB*'(B*xB*')']B*(x+R-tx)B*'(B*xB*') 18*'2

B¥IB* (B*(3+R)B*') 1Bz,

= t-x+(l-t)(x8*(8*x8*')']B*'x).

29
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Since the above expression is valid regardless of which B in the
class of B's which satisfy Bz = aa we take, we have the following

theorem:

Theorem 1.2.3. If we assume the conditions given in Lemmas 3 and 4

and in Theorem 2.2.2, then z goes almost surely to
€1.2.7) t-r + (l—t)zB'(BxB')‘1B'z.

The most startling thing about the above is not that z is not
a consistent estimate; when the number of parameters gets large, the
estimate of the covariance matrix is usually inconsistent. What
makes the above unusual is the fact that the matrix L goes to is a
function of B. The second term in (1.2.7) is very unusual.

We can not discuss the consistency of ;, since it is not a

fixed matrix of parameters. It is interesting to consider to what
N“VZF(1-Fra' (aFF'a') TaF)F' =

converges almost surely. We might expect it to converge almost

surely to R as

N"T=F(1-F'a' (aFF'a’) " aF)F"

does. However, if we went through a proof, we would find it actually

goes almost surely to

R+(1-t)z +-(1-t)B' (BzB') 1B's.




1.3. Special Cases

Special cases of the models we discussed have come up many times
in the literature. We will be discussing cases when the F matrix has

the following form:

bR oaae VB0 B B0, B
(1.3.1) e o BB @ O ST D

SRR R O B

If the F matrix has the above form, our additional information
consists of knowing some of the observations come from the same
mean, i.e.,we have replications at each mean. The model could be

written this way:

(1:3.2) % 5 6 ¥ 8.0 5 0lsnsls 35 1.2, 000t

ij i §° i
= (51352,--”5‘();
E = (ell’e]Z""’ein] ins Bpg )
k
Note: In all of our special cases,
TN S ;i oy = gt ;i
N = A X = n. Yo 5 = in Xos s
=1 gt et gEp Ll

We wilé need the MLE's in the following two cases. The first
case specifies that the set of mean vectors is in a lower (p-r)

dimensional space passing through the origin:

(1.3.3) BE; =0, Y.

The second case specifies that the set of mean vectors is in a




Tower dimensional space which can pass through any point:
(1.3.4) Be, = a, v;.

For the first case, we will apply Theorem 1.1.3 with F as

defined by (1.3.1). Our result is:

Application 1. When our model is

X; s i=1,2,...,k; J = 1,2,...,ni;

1]

BEi = 0;

fitey;s

then the MLE of B, Ei and < are

PR R R
Ei = xi-NB(BNB ) Bxi,
T i \ -
=N 121 jz](xij-gi)(xij-gi) s
where i

k i L _

k \
L5, 121 jzl (x;5) (x50

and the columns of B are the eigenvectors corresponding to the

1,

r smallest eigenvalues of W~
For the second case we can apply Theorem 1.1.2 with a = (1,1,...1)

and F as defined by (1.3.1) to get:

Application 2. When our model is

15 % Eiteiys 17 L2enks 5= 102000y

X 2

BEi 2 o




then the MLE of B, a, gi, and & are

a = Bx,
£, = X,-WB(BWB')™'B(X,-%),

e Lask W -

I=N Z jZ](x]j-gi)(x1J 51) ’
where

ny
= Q--Q .l--o'
e )T R Oy

—
]

k M
L LR
and the columns of é' are the eigenvectors corresponding to the r
smallest eigenvalues of wlT.

The model in Application 2 is the same model Rao [1973]
considers when he talks about a test for dimensionality. His test
of dimensionality is a test of the hypothesis that BEi = a versus
the hypothesis Bgi # a. His test statistic turns out to be similar
to the likelihood ratio test statistic although he neither mentions
nor proves this. He does find the Tikelihood ratio test when I is
known.

Villegas [1961] considers both Application 1 and 2 - the first
of which he calls a homogeneous linear functional relationship. All
of Villegas's results are only valid when we are talking about a
single functional relationship, i.e., B is a row vector. Through
geometrical arguments similar to the techniques used by Max Van Uven

-

[1930] who derived estimates of B and = when T is known, Villegas
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derived maximum 1ikelihood estimatorswhich agree with Anderson's
and ours. é turns out to be the eigenvector associated with

the smallest eigenvalue of Wt Villegas also talks about cases
in which Theorem 1.1.4 applies,i.e.,when K # IN' He shows that
the covariance matrix has the form needed in Theorem 1.1.4 when
it arises from certain experimental designs (mainly incomplete
block designs.) Since our results are valid when B is any rank
(< p-1), our results can be thought of as extensions of Villegas's
results for a single functional relationship.

We can give another application which fits directly into a

one-way analysis of variance. Let our model be

e = WHE 0.
x.|J Ug,l e.IJa

where p is the unknown grand mean. We will make the common
k

assumption that ) Eilty = 0. We will be fitting parameters under
i=1

the hypothesis that,

Béi = 0.

It should be noted that Bgi can not equal anything but zero when

LE.ng = 0. The MLE of u is

=
1]
x1

If we substitute u into the likelihood we have exactly the same
maximization problem that is solved in Theorem 1.1.3 except that

we will use

X* = X-x(1,1,...,1) = (x]1-x, x]z—x,...,xknk-x),
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instead of X. If we use X* and F as defined by (1.3.1) in

Theorem 1.1.3,we get the following application:

Application 3. When our model is

"

xij u+gi+eij; 1 =ML 2,0 000k 3 5 T2 e s
Bgi =0

then the MLE's of u, B, 51 and ¢ are

U=)-(9
= G Al = AI ‘.'A = z
§i - Xi’x = WB (BWB ) B(Xi-x),
el ol Sl : .
=N s i=E s i Bt
iZ] J_Z] (x;5-84) (xg5-54)
where
S
W= Kag=%s Jxse-%:)" 5
T - R N i
R i 4
T = 121 jZ] (xij-x)(xij—x) .
and the columns of é' are the r eigenvectors corresponding to the
r smallest eigenvalues of Wt

The model considered in Application 3 is a generalization of
the model given by Kristoff [1973]. Kristoff gives an ad hoc goodness
of fit test for his model which is actually equivalent to likelihood
ratio test statistic.

In all applications so far, the estimate of B which was given

and which maximizes the likelihood was unique only up to multiplication
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on the left by a nonsingular matrix. By picking a unique member
from the class of maximum 1ikelihood estimators as we did in our
section on the consistency of the estimators, we will show another
class of models can be handled with our method.

Consider the following model:

(1.3.5) Yij = vi+mij; ¥ 2 32,0008 4 = ],2,...,ni;
where yij and Zij are p-r and r dimensional vectors of observations

respectively, v; is a p-r dimensiona]mparameter vector, H is a
unknown rxp-r parameter matrix, and (g:j) is the error term. We will
be trying to estimate Vs and H. The most reasonable assumption
(according to Acton [1959])about the distribution of the errors

is that each (miq) have a joint normal distribution with mean 0

and unknown cov;iiance matrix ©. Errors arising from different
observations are independent of each other. e will now show that

our new model (1.3.5) is just another application of the model in

Theorem 1.1.3.

If we let
Vi ms . v,
s [t - 1Jy g bed 1
X..-—( ), Gae = ( s a2 & ( )s
1] zij 1 gij 1 ij

our new model (1.3.5) can be rewritten as

. = E,4€, .,
xiJ €1+ 1J

We also have a side condition that




(., Pe. =0, ¥,

1 1

This formulation of (1.3.5) is very similar to Application 1, the
only difference being that now we want the last columns of B to
form the identity matrix as we did in the section on the consistency

of the estimators. If we let

~

= (R}
B* = (B,

Byo1) = B (ByB,) = By(B),

where B = (é]’éZ) is the estimate of B from Application 1, then B

is the only matrix with the correct form which maximizes the
likelihood. éz will be invertible with probability one;however

if it is close to being singular (one of its eignevalues is very
small),our results will be misleading. It would indicate that there
is a strong internal relationship between the p-r variables composing

Since é* is the only matrix of the correct form which is a
(é(Z))~1é(1)

Yije

maximum likelihood estimate, - must -be the maximum
likelihood estimate of H. From Application 1 we can also get the
MLE of Ei and . Since Vs is the top p-r rows of 45 We have the

MLE of Vi If we summarize the preceding statements, we have:

Application 4: If our medel is given by

12 bedsenusky J° 1,2,...,ni

¥3 = Gy
s = b0 R
ot e

where Yijr V4o m, H and 95 5 are defined in the paragraph

j’ Zijs
following (1.3.5), then the MLE of H, v. and £ are given by
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Vi = oW é'(éwé')“é(yi)
g ¥ 2,
-~ _1 n Hoeoie. = Foz-Ny
z = z p (N Yot ek g,
1IN S i i
where @ _
k i Y. . ] V.
oo § i Iy B,
Gl A A Zia T Zsto ¥
i=1 3=V 7ij T i
k
T=3 z (, T3y ‘3)
i=1 j=1 13 13
and the columns of B' = (B(}) p(2 ))‘ are the eigenvectors associated
with the r smallest eigenvalues of Wt

®emark: Application 4 is very similar to a model discussed by
Gleser and Watson [1973]. In Chapter 3, we will be discussing

models which are generalizations of Gleser and Watson's model.

We could make minor alterations on the model we just discussed.

For instance, we could estimate parameters in the following model:

Yig = Vit

o7 .+atq. .
g5 = Hvgtota,,,

i

Z

where all the terms (except a) are defined in the previous application.
The maximum likelihood estimates can be derived from Avplication 2 in
a manner analagous to the way we derived the estimates for ZApplication
4 from Application 1.

Similarly Application 3 could be extended to cover the following

mode] :
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+y.+m. .
Ry m1J’

’.-12+HV,i+gij )

2

213

it

where all the terms (except N and u2) are the same as in Application

1.
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CHAPTER 2

TESTING THE EXISTENCE OF UNKNOWN LINEAR RESTRICTIONS
IN THE CLASSICAL MULTIVARIATE LINEAR REGRESSION MODEL

2.0 Introduction

Let our model be the same model we considered in Chapter 1:

(2.0.1) X = zF +E,

where X is a pxN matrix of observations, = is an unknown pxk(p<k<N)
parameter matrix, F is a known kxN matrix of covariates, and E is
a pxN matrix of errors. We assume that each column of E is
independent of any other column. We also assume that each column
of E has a normal distribution with mean vector 0 and unknown

covariance matrix £. In this chapter we are concerned with testing

(2.0.2) HO: Bz = aa against H]: Bz # ca,

where B is an unknown rxp matrix, o is an unknown rxs(s<r<p) matrix, a
is a known sxk matrix. We will derive results when a is of full row
rank. For the case a is the zero matrix, i.e., when we test

B= = 0 versus B= # 0, we will merely state our results since in this

case all results can be derived in a way analagous to the case when a

is of full row rank.




In Section 2.1 we will find the likelihood ratio test statistic
of H0 Versus H], and mention similarities to test statistics of
Rao [1965] and Kristoff [1973]. Section 2.2 will contain a discussion
of the asymptotic distribution of the roots of which likelihood
ratio statistic is a function. We will be concerned with cases
when the number of parameters increases with the sample size. In
Secticn 2.3, we will use the results of the preceding section to
get the asymptotic distributions of the likelihood ratio test

statistic and therefore asymptotic tests of H, vs. H]. Section 2.4

OV
will contain a proof that the tests described in Section 2.3. are

consistent.

2.1. Likelihood Ratio Test Statistic

In this section we will be finding the likelihood ratio test

of HO: Bz = «a versus HI: Bz # «a when our model is
(2.1.1.) X = =F + E.

A1l variables are defined in the introduction of this chapter.
In Chapter 1 we derived the maximum 1iké]ihood estimators of
the parameters under HO. .If we substitute those estimators into the

1ikelihood function (see (1.1.24) and {1.1.19)), we have

-1 noN -2 oN P ‘ 2N
(20.2) ox L(K,5a,) = (20 FPNeE PN B NGy o g R,
0
where
(2.}.3) = X(I’F'(FF‘)-]F)X"
(2.1.4) T = X(I‘F'a'(aFF'a‘)']aF)X',
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and li is the ith largest eigenvalue of W']T. We may use standard
multivariate regression procedures to get the maximum value of the

likelihood function when H] is true:

(2.1.5)  max L(X,B,=,a,5) = (2n) % PN~ PNy -2 N
H
1

where ¥ is defined above. If we combine (2.1.2) and (2.1.5) we ,

will be able to get the likelihood ratio test statistic of H0

versus H,. Qur result is summarized in the following theorem.

Theorem 2.1.1. If our model is given by (2.1.1) and we wish

to test the hypothesis HO: Bz=wa versus H]: B:z#aa (@ has full row rank),

then the likelihood ratio test statistic is
max L(X,B,=,a,%)

H
0 4 e -3 N
max L(X;B,5,a,2) - Vp ip=17 s Appry)
H
]

A=

1

where A is the ith largest eigenvalue of W 'T and W and T are

defined by (2.1.3) and (2.1.4) respectively.

Remark: When a is the zero matrix, the Tikelihood ratio test
statistic is identical to that given in Theorem 2.1.1 except that
T is equal to XX'.

We also have the following corollary:

Corollary 2.1.1. Let our model be

W R R R 1,2,...,ni;

where Xij is a p-dimensional vector of observed values, Ei is the

mean of the ith group of observations and By

3 15 a p-dimensional




' _ § - e 4l!H-N!!!ﬂ'H-I'IHI-.'l-N.H.'.!-.-!FF.----.!-.--..-'-."
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‘

Si’ error vector. We assume that the errors are independently distributed
with a normal distribution having mean vector 0 and unknown covariance
matrix &. The likelihood ratio test statistic of the hypothesis
HO: Bsi = a versus H]: Bai # a,where B is an unknown rxp matrix and

@ is an unknown rxs vector,is

i -2 N
p‘lp_] ... p_r+]) .,

where A is the ith eigenvalue of w"T and

n. (
1 |
}: y (xij—ii)(xt'_;i},’ 1

w =
=1 j=1 1 ;
'E( gi( x)( X) |
T = Xos=X)(Xs=x)",
o R R
.= (n)7! ;1. L ;1-
x. = (n. X::9 %X =N Xio=is
1 1 =1 13l i=1 j:] 1]

L) b

k

N = izl n;.
Corollary 2.1.1 follows from Theorem 2.1.1 just as Application 2
followed from Theorem 1.1.2 in Chapter 1.

The reason we mentioned Corollary 2.1.1 is that the hypothesis
we are testing in that corollary is exactly the hypothesis of
dimensionality in Rao [1973]. Rao derives the likelihood ratio test
statistic when £ is known. He does not derive the likelihood ratio

3 test when £ is unknown however he does give an alternative test
which is also based on the smallest roots of w']T. He gives an

: asymptotic test based on his test statistic which is valid only

when k the number of groups is fixed. If we use the model in




Corollary 2.1.1 we may believe that the number of groups should

increase when the sample size increases. The asymptotic test in

this case would not be the same as when k is fixed (see Section 2.3).
Kristoff [1973] considered testing an unspecified linear

relationship in several models. In the basic model (his case 1),

we measure a person's scores on two tests. We assume there is an

equivalent form of each test available. A person's scores are equal

to that person's abilities (true scores) plus an error term. MWe

summarize this model with the following equation:

Xes: = u+gi+e1.

i 1= 1,25.0n:Ks 3% 1,2: N = 2k;

J'"
where Xij is a 2-dimensional vector whose elements are the ith
person's scores on the jth form of the two tests, u is the average
person's true scores on the two tests (it is the same for either form
of the two tests), > is the difference between the ith person's

true scores and the average person's true scores, and Oij is the error
term. The error terms are all pairwise independent. FEach has a
normal distribution with mean vector 0 and unknown covariance

matrix . We wish to test the hypothesis that a single unspecified
linear reiation exists against the hypothesis that none exists, i.e.,

we test

: . = ¥s $ E. some i,
0 Bgl 05 ; versus H] B?1 # 0, for some i

where B is an unknown 2-dimensional row vector. We found the maximum

likelihood estimators of the parameters when HO is true in Application
k
. &, = 0. We could also get

of Chapter 1 under the assumption that ;
1

i

S

b




the MLE's when H] is true using the usual theory of multivariate

linear regression. If we put these together we would get the likeli-
hood ratio test statistic which turns out to be a function of the

1

smallest eignevalue of W 'T; ¥ and T are given in Application 3.

1

The smallest eigenvalue of W 'T is the same statistic Kristoff

recommends. If we were to increase our sample size in this
example, we would probably increase the number of people in our
sample and not the number of equivalent forms of each test, that is,

we would assume that k increases as N does and that

2k-k _
21’( = ]/2.

This example, therefore, provides us with a situation in which the
numuer of parameters does not stay fixed as the sample size increases.
In case 2 of Kristoff, we have exactly the same model as the
above with one minor change - the difference between the score on one

form of the two tests and the score on the other form of the two

tests need not have expectation 0. Our model is

X.s = £i+°j+e' Sl PV PR, S B P

iJ 1j;
where xij’ éi, and e are defined as before and Oj is the expected
true score on the jth form of the two tests. Again we will test
HO: Bgi = 0, Vi versus H]: Bgi # G, for some i, where B is an

unknown 2-dimensional vector. If we estimate 95 first, we can find

the MLE's of the parameters when the hypothesis is true. (See

Application 3 of Chapter 1 for the type of argument needed.)
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Ea’ When the hypothesis is false, it is also easy to get the MLE's.
The likelihood ratio test statistic is a function of the smallest
eigenvalue of w']T, where

2

k
Me T % (K a-Roeek.
f=1 g=1 M 1

AX) (X c=Xe =X, . +X) ", j
3 x)(x]J X . X'j X)

k. 2

R T T | e [
i=1 j=1

-
i

>
!

K
_i' = (1/2)(x1]+x12), s = k'] g X

g 2
=™ g Y

%o A
i=1 j=1 L

The smallest eigenvalue of Wt is also the statistic Kristoff

recommends.

2.2. Asymptotic Distributions of the Roots

In this section, we find the asymptotic distribution of the R

roots needed in the likelihcod ratio tests under the null hypothesis,

Ho: Bz = oa. The roots in which we are interested are the smallest
roots of

(2.2.1) |T-ANH§ = 0,

where

(2.2.2) T = X(Iy-F'a’(aFF'a') " aF)X',

(2.2.3) W= X(I-F' (FF')TTR)XC.

Throughout this section, certain variables are subscripted with an

(:} “N" jindicating that those variables are connected with a sample of
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size N. We will let X\ be the ith root of (2.2.1) when our sample
is of size N.
It is helpful to find the distribution of the smallest roots

of

|T-W-g, ]| = 0. ;

Note that if PiN is the ith largest root of the above expression,

then din * = Nino where 1., is the ith largest root of (2.2.1).

1
A1l our theorems are results in terms of SN We will assume that
a is of full row rank. ’

In this section, we discuss cases when the number of parameters
increases with the sample size. We already mentioned that the

models of Kristoff [1973] provide us with examples where it is

reasonable to assume that the number of parameters increases with

) SOUN A W e

the sample size. A measure of how fast the number of parameters

increases will be

Tim M=K 2 1014

i
N o
N»»co N

g = ll-t) = &

There are three possible cases:
Case 1: k is fixed;
Case 2: t £ 1;

Case 3: k goes to infinity as N does; t = 1.

We will always assume that r (the number of rows of B), p (the
number of rows of X) and s (the row rank of a) are fixed.

When k is fixed, the asymptotic distribution of the r smallest

roots (from Anderson [1951b] and from Hsu [1941]) is the following:
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g Theorem 2.2.1. Let PiN = N°¢1'N; i = p-r+l,...,p; where LY is the
ith largest root of {T—W-;NWI= 0. Then the limiting distribution

of (pp-r+1,N’pp-r+2,N""’ppN) when k is fixed is

A o X 'E Pin/2
2°% r(k-s- P*P)(n)%(r) I C$§k-s-p-])e i=p-r+]
i=p-r+l
i) o ;
.n] F(ﬁ(k-s-pﬂ*—]-l))I‘(?(PH—]))
]:
p p
I it (piN-ij)'

i=p-r+l j=i+l

The above distribution is the same as the joint distribution

of 05 where P; is the ith largest root of

1d - pI] =0,
@ and J is defined by
k-s-p+r
L L
2 S

where the u; are independently distributed with a normal distribution

with mean 0 and covariance matrix Ir.

Remark. Theorem 2.2.1 can also be used when a is the zero matrix by
letting s = O.

We now derive the asymptotic distribution of the roots in
Case 2 and Case 3. The asymptotic distribution of the smallest
recots in these cases is markedly different than the distribution of
the roots given in Theorem 2.2.1. Before we state and prove several

theorems which give the asymptotic distribution of the roots in

(:) Cases 2 and 3, we need to derive several lemmas.
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}b Lemma 1. Let our model and hypothesis be given by
X = =F + E,
B=F = «aa,

where X, =, F, E, B, a, and a are defined in the introduction

to this chapter. The roots of
}T-w-¢Nw1 =0,

where T,W are given by (2.2.2) and (2.2.3), have the same

distribution as the roots of

(2.2.4) [(N-k)7T UsU*" 4 NE(N-k) TTeog (N-K)E 20D, | = O,

where
c]] . Cp-r5] E.i
Q C = Cp_r,]... Cp—r,p-r E;')—r »
E] — Ep-r 0

= o pe ; o 1%
hht = e YRen F hew Ui

AT Uﬁ,p-r+ﬂ\ ’
ur

Hyp-r+2§

m
i

hp
Rk Tty O .
i -0 ﬂ?k YoN~¢N L 1
6 5 -4 1.

(:) Z = (N-K)E(VV' - (N-R)1),

—"

s o o e i B 5
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’3 and YiN is the ith largest eigenvalue of

NV (=F(I-F'a* (aFF'a*) Yap)Fe)s !t

and finally U*, V are pxk-s and pxN-k respectively whose columns
have independent normal distributions with mean vector 0 and

covariance matrix Ip.
Proof. For any invertible pxp matrix o we know that

lo(T-W)o'-¢oWe'| = [T-W-¢W| = 03

the roots ¢ are the same whether we observe X or 6X. Since
we may pick 9 so that exg' = Ip, we may assume, without loss of
generality, that the columns of X have p-variate normal distributions
with mean vectors equal to the respective columns of 6=F and with
@ common covariance matrix Ip.

Next we will let V],VZ,V3 be column orthogonal matrices such

that
vy Vi = Fla'(aFF'a’) laF,

1-F'(FF')™

nNY
-

N -
]

F'(FF')"F-F'a' (aFF'a’) " TaF.

-
"

It is easy to see that such matrices exist. Let

Y = (Y],Y2,Y3) = (XV],XVZ,XV3) = X(V],VZ,V3),

where Y1 is pxs, Y, is pxk-s, and Y. is pxN-k. Since (V],VZ,V3)
is an orthogonal matrix, each column of Y has an independent normal

distribution with covariance matrix Ip.

O
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@ The roots for which we are getting the asymptotic distribution

are functions of Y2 and Y3. Since Y] is independent of (Y2,Y3), we may

eliminate it from our considerations. The distribution of Y2, Y3 is

i
|
constant -exp - %{1r(¥2-8;FV2)(Y2-02FV2)' + (Y3-6;FV3)(Y3-0:FV3)'] = !
J
|

] s r]l:
Y3Y3 in terms of GG

1

(2.2.6) &6 0'F\3Vé“’9'=efF(F'(FF')'}F—F'a‘(aFF'a')' aF)F'='e",

!

1 , f

. = [ b= (Y,-0= NE ] I

constant . exp - - [tr Yo¥5 - (Y5-0 FV3)(Y3 ) FV3) 1. {

g btk : s E

We want the distribution of the roots <*]N’¢2N""’¢pN) of h

G s " 1| <

[T-W oW ] |Y3Y3 EPAPIR }

:

We know that YZYé has a central Wishart distribution and that Y3Yé j

has a noncentral Wishart distribution. ﬁ

I3

We now let !ﬂ

EH

¥

(2.2.5) G = asky,, b

© i

We can write the noncentrality parameter in the distribution of ‘i
|

1

i

|

|

= o=F(I-F'a'(aFF'a') laF)F'="e" .

166'. Under the i

1

Let (Y]N’YZN""’YpN) be the ordered eigenvalues of N~
hypothesis that Bz = ca, the r smallest eigenvalues of N 'GG' will
equal zero.

Next, we transform Y2 and ¥ in such a way that only a few

elements of the resulting matri . are dependent on the non zero

eigenvalues of N166'.  Consider

<:> U= r]Y3?2, and V = ﬁ Y2.
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é%? where Ty and r, are orthogonal matrices which make
/}]N E_’;... 0
O V",'ZN .o
A T S ke
F]GF2~ VN 0 0 prNO 0
0 0 Weran: =00 g ..o 8
0 0 0 0 0

Since r] and r2 are both orthogonal matrices, the distribution of

Uand V is
2.7 ] v e

(2.2.7) constant-exp- ?(t UU'+VV*') f Yin Ysi N]Z] YiN)’ it
i

where Uy is the i,ith element of U.

e:a We want the distribution of the roots of 3

(2.2.8) ;UU'-¢NVV‘}=§F)Y3Y§F]'-¢NF)Y2(§T; ‘\:Y3~¢NY2Y§ =0, ;;
b

We should mention that U is pxk-s and that V is pxN-k.

Finally, we will make several substitutions which will give us

our lemma. Let
y* = U—?TGFZ.

The joint distribution of U* and V is

(2.2.9) constant-exp[- %—tr(U*U*'+VV')],

i.e., the columns of U*, which is pxk-s, and the columns of V, 5

which is pxN-k, are independently distributed with covariance matrix |

Ip and mean vector 0. We therefore have
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(:) (2.2.10) uu* = uxu*' + N C + N(D]+¢N-Ip),

where C and D] are given in the statement of this lemma. Our final

substitution is

-
2

i

£ (2.2.11) 7 = (N-k)"2(Wv'=(N-K)1 ),

- O

0]

(N-K) B(WV) = (N-k) 1.

The lemma now follows through a substitution of (2.2.10) and (2.2.11)

into (2.2.8). Q:E:D.

‘ Lemma 2: If P is a pxk matrix and each column of P has a normal
distribution with mean 0 and covariance matrix Ip, then each
element of the matrix (k)'i(PP'-kIp) asymptotically has a normal
distribution with mean 0, variance 1 for diagonal elements and

CZD variance 2 for off-diagonal elements. All elements are asymptotically

independent. We will call this asymptotic distribution the

p-dimensional matrix normal distribution.

Proof. Use Theorem 4.2.4 in Anderson [1958].

Remark. If we let (PP')22 be the rxr matrix which comprises the
lower right hand corner of PP', then
&
k™2((PP")

=T N
27 kIr’

b has an r dimensional matrix normal distribution.

We now state several assumptions which we will make when we

discuss the asymptotic distribution of the roots for Cases 2 and 3.
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1

Assumption 1. The matrix N 'GG' defined by (2.2.6) converges to a

finite matrix R which has rank p-r.

Assumption 2. y,\ = v; * o(/N), where v; is the ith largest

)
eigenvalue of R and YiN is the ith largest eigenvalue of N 'GG'.

Assumption 3. The non zero roots of R have multiplicity one.
Assumption 3 is not necessary; the proof given below would

have to be altered to apply when the non zerc roots of R do not

nave multiplicity one. Since the alterations only complicate matters,

and since they do not affect the distributjon of the smallest roots,

we will omit them.

Papt V. Gase 2: 1im Eﬁ5»= t#£1.

N
In the following theorem, we give the asymptotic distribution
N-k

of the roots when lim R t#1.
Now
Theorem 2.2.2. Assume that 1im Nﬁﬁ = t <1, and that Assumptions
.
1, 2 and 3 hold. Let
5 N :
vp_r_‘.-i‘N: (N-k)“(Q‘D_r*_;qu'(k/N—k)), s ],2,--.,7‘,

where diN is the ith largest root of Tw']—lp. The limiting distribu-
tion of (\b-r+LN’\b-r+?,N’"'\bN) is the same as the distribution_

of the r roots from

[(1/7¢-1)2 Q- (1/£-1)Q,-v1 |

where Q] and 02 have the r-dimensional matrix normal distribution

(see Lemma 2).
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ﬁ’ Proof. By Lemma 1, we only have to consider the distribution of the

r smallest roots (°iN; i = p-r+l,p-r+2,...,p) of

(2.2.12)  [(N-k)TTUsU** -NE(N-K) T ey (N-K) 224D, | = O,

where C, Z, and D] are defined in Lemma 1, and the columns of U*, V
have independent normal distributions with mean vector O and
covariance matrix Ip.

Consider the following matrix:

Ao k‘i(u*u*'-kxp).

If we substitute A into (2.2.12), we get the following equation:

1

J - _‘, - - -
(2.2.13) ()% (N-k) 7 A+tE(N-K) T Cmgy (N-k) 224D 4k (N-k) 1T | = 0.

1 p'
By Lemma 2, A and Z have p-dimensional matrix normal distribu-
<§’ tions. It is easy to see that C is asymptotically independent of
A and Z. The elements of C are functions of the first p columns of
U*. Since A is the same asymptotically if we delete the first p
columns of U*, C and A can be thought of as functions of different
variables asymptotically. The asymptotic distribution of C can be
obtained by using the definition of C.

Consider the following variable:

./ N-K.

(k/N=kv) s

We can substitute the above expression into (2.2.13) for N and

try to find out what v must be distributed as when N - «, Qur

p-r+i
result is

1 1

o

-1
-k) '+(N- 2
CH{k(N-K) T (N-K) By

L -
A+NZ(N-k)

(2.2.18)  [KE(N-k)"

Q where

)Z+02{=0,
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Vv ~
U SRR L. 7. 0 0
N-K YIN T T
0 lYo - .“.'j_i_ 0
) Nk ToN T T
2 .
0 0 TUporti .1
/N-k r
Let us write
Ga i o e Mol T
Aor Az A Loy Ipp

where A,,, 2%1, Z;1 are all p-rxp-r; Ayy, 3512 and Z;, are all
p-rxr, etc. We now discuss the upper left hand block of p-rxp-r
elements inside (2.2.14). When N is large,k%(N-k)']A]],N%(N-k)'] iﬁ]

- ll
and (N-k) 2211 all are arbitrarily small. The only matrix which

remains is T
" i
S Yo B e Wy = B a8 |
N .
0 Nk Yo 0 1) 0 1/t Yy oen 0
N 0 B e
# g N-K Yp-r,N R

The elements in the last r rows and columns all go to O when N
1
gets large. If we multiply the last r rows and columns by (N-k)*,

we will be able to find the terms that dominate. First of all,
2 % -1 a.s. 3 3 1o LS
(N-k)*[k=(N-k) A]Z] > 0,(N-k)5[(N)=(N-k) %]2] + 0 and
2 g a.S.
(N-k)=[(N-k) 2-212] -+ 0.
a.s.
Almost sure convergence is indicated by -
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1
When we multiply the r rows and columns by (N-k)%, we multiply the

2
lower right-hand corner by (N-k)%. By Lemma 2 we know that

A=K vk %
S PR VLRI

where £ indicates convergence in distribution and Q] has a

r-dimensional matrix normal distribution. Similarly

Wk L2 © (1100,

where 02 has a r-dimensional matrix normal distribution. A1l other
terms go to zero.
If we combine the above statements, we get that when N is large

(2.2.14) becomes

]/t ‘1'] 0 e
0 1/t Yp o oe.. 0
0 0 Q3
where

4, = flt-1)* Q=17 tt)0mn, gl

ne

Therefore v is a root of iQ3i = 0. The distribution of

p-r+i
¥ e . r e
(“p-r+l’ Vpops2tt e »p) is the distribution of the roots of

i(llt-1)% Q)-(1/t-1)Qp-v1 | = 0,

where Q] and 02 have r-dimensional matrix normal distributions.
Consider

-k e 4 ;
bin = Wk viN//N-k I R o £ g 189010 o AR o 1

i

" " > o




where ViN is picked so that we have equality in the above expression,

i.e., vy IS defined by N

- Ky et
vin = gy - i) Nk = i (AZ,0).

We now show that the distribution of vy goes to the distribution
of Vi-

Qur preceding discussion shows that when

Mo 5 Noo

and A, Z and C all converge to finite matrices,
LR Sl s
We have mentioned the limiting distributions of A, Z, C. The set

of discontinuities of

’VD)

(Vp_r+]'vp_r+29~-' 7 (fp_r+](Q]9Qz)a-~-afp(Q]’Qz))-

occur only when one or more of the roots (v .,vp) are

p-r+1° p-r+2°°"
equal; the set of discontinuities has measure O since the probability
any of the roots are equal is zero. By applying Rubin's theorem

(see Anderson [1951b]), we have that the asymptotic distribution of
(vp-r+1,nyp-r+2JP""VpN) is the same as the distribution of
(vp-r+1’vp—r+2""’vp)' Q.E.D.

Using Theorem 2 in Anderson [1951b] and the above theorem,

Theorem 2.2.2, we concliude the following:




N

Theorem 2.2.3. Assume that Tim N-k - t < 1 and that Assumptions

N

N-rco
1, 2 and 3 hold. Let

N Kk ;
piy = (65y-k/N-K) :%?::‘ s 1= pertl,pert2,...,ps

where iy s the largest root of TW'1-Ip. The limiting distribution

Of (Dp_r+]’Nspp_r+2,N, .o ,OpN) i;
r 5 PiN p r
%2 0 (elenr-inale BP S
i=1 i=p-r+1 j=i+1 "
Part 2: Case 3: k » = as N > = but lim Hﬁ& = 1.
N->

The following theorem will contain the asymptotic distributicn

of the roots when k goes to infinity as N does and 1im(N-k)/N = 1
Noro

Theorem 2.2.4. Assume that k > = as N » =, that lim E§5-= 1 and
Nowo

that Assumptions 1, 2 and 3 hold. Let

- -l o
viy = (05 = REINKTP5 1 = pert], pere2,....p;

1

where N is the ith largest root of TW -Ip. Then the limiting

distribution of ( ,va) is the same as the

Up-'{'*'.],N’ \'p-r+2,N. TR
distribution of the r roots of

Qv 1] = 0
where Q has an r-dimensional matrix normal distribution (see

Lemma 2).

Proof. Because the proof of this thecrem is very similar to the

proof of Theorem 2.2.2, we will only give an outline of the proof.
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By Lemma 1, we only have to consider the distribution of the ﬂ

r smallest roots (¢iN; i = p-r+l, p-r+2,...,p) of

(2.2.15) ](h-k)']u*u*'+N%(N-k)“c-¢N(N-k)‘%z+D]! = 0,

where C, Z and D1 are defined in Lemma 1 and the columns of
U*, V have independent normal distribution with mean vector 0 and
covariance matrix Ip.

Consider the following matrix:

A = k‘%(u*u*'-klp).

Substituting A into (2.2.15) yields

Z k { e
(22.]6) lv/k-/N-k A+ V/N-/N-k C-¢N ————' +D] + W_—k- I =,

We now consider the following variable,

it

LY

K/N-K + v /K

Substituting the above into (2.2.16), we obtain

(2.2.17) Iﬁgg A + Ngg C - (N§E + iﬁgéii)Z//N?E'+ Dzi = 0,
where
N?E YIN T jﬁi?%i 0 s 0
%" . N¥?'Y2N £ zﬁiSEL 0
; R = B
Nk =

If we multiply the last r rows and columns of the matrix inside the

S
determinant of (2.2.17) by N* k™%, and Tet N go to infinity, we get




Y1 0 0
0 Y
. ,2 = O’
0 0 Q
where
= Ql'vp-r+i'lr : ;lf A22'“p-r+i' Ips
= ;jf Ayos

and A22 is the lower rxr right-hand corner of A. Therefore,

v is a root of |Q] = 0. By Lemma 2, the distribution of

p-r+i
(“p-r+1’“p-r+2""’“p) is the distribution of the roots of
IQ]-VIr! = 0

where Q] has the r dimensional matrix normal distribution.

A11 that we have to show is that the v which gives us

p-r+iN
equality in

ok, Vp-rtiN
¢p-r‘+1‘N N-k Nk'%

goes in law to v The demonstration of this fact for Case 3

p-r+i”
is the same as for Case 2. We therefore have our theorem. Q. E:D.

1f we use Theorem 2 in Anderson [1951b] and Theorem 2.2.5, we

can conclude the following:

Theorem 2.2.5. Assume that 1im Eﬁk= 1, that k > » as N » », and

N

that Assumptions 1, 2, 3 hold. Let

™ VR g .
vig = (05 -K/N=KINKT#5 3 = p=r+], p-r+2,...,p;

1

where ¢, is the ith largest root of TW™ -Ip.
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Then the limiting distribution of the set (vyys 1 = p-r+l,...,p)

is p
-] e
5 r i b iN p p
27/2[ ¢ r(%(r+1-i))] LS8 sl I By [vambiend,
i=1 i=p-r+l j=i+l J

Remark: Theorems 2.2.2 through 2.2.5 are valid when a is the zero

matrix.

2.3. Asymptotic Tests of Bz = aa Versus Bz # aa

In this section we use the asymptotic distribution given in
the previous section to get asymptotic tests based on the likelihood
ratio test statistic. It should be recalled from Theorem 2.1.1 that

the likelihood ratio test statistic is given by

i
4

A N— bid \t‘ N
)2 S (]/]+¢’]N s

P
A= T (17254
i=p-r+l]

i=p-r+l ;

where NN is the ith largest eigenvalue of TW'] and Yin is the ith

1
-1
p

First, let us consider the case when k is a fixed quantity:

largest eigenvalue of TW™

Theorem 2.3.1. (Anderson [1951a]) If our model is given by

(2.0.1) and we wish to test the hypothesis thau Ho: Bz = aa versus

B= # aa, then the asymptotic null distribution of
¥ = -2 log A
i
is a y2 distribution with r(k-s-(p-r)) degrees of freedom. The

a-level asymptotic test of HO: Bz = aa versus H] = Bz # aa would

be to reject the hypothesis HO when
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¥ Y )
r(k-s-p+r)
where x5(8) is the eth fractile of a x° distribution with d

degrees of freedom.

Remark: Theorem 2.3.1 holds when a is the zero matrix if we let
s = 0.

Let us assume we are actually in Case 2, i.e.,
Tim (N-k)/N = t < 1, and we (mistakenly) try to use the test given
?;QTheorem 2.3.1. We now examine what happens to Y under H0 when N
is large. Note that

p
2% h=-2T0g 1 (1/14,)2 N

i=p-r+l

€
1}

N E Tog(1+6.).
i=p-r+l
Using Theorem 2.2.2 we can show that \+¢iN goes almost surely to

1/t for i = p-r+l, p-r+2,...,p. W2 therefore know that

E 1og(1+¢.N) goes almost surely to r log(1/t). Since

i5p-r+] i

N-r(log 1/t) goes to positive infinity, we conclude that when Ho s
true, ¥ gets arbitrarily large in this case as N goes to infinity.
If we were to apply the test given in Theorem 2.3.1 for Case 2,

our probability of rejecting HO’ even when it is true, approaches 1

as N approaches infinity. For Case 3 we have a similar result. We

su marize the preceding statements in the following theorem:

Thiorem 2.3.2. If our model is given by (2.0.1) and we wish to

test Bz = aa versus Bz # aa under the assumption that k goes to ‘

o




infinity as N does, then ¥ = -2 log A where A is the 1likelihood
ratio test statistic goes almost surely to positive infinity. The
test given in Theorem 2.3.1 is meaningless in this case; when HO
holds, we would reject H0 almost surely in large samples.

Since ¥ does not have an asymptotic chi square distribution in
either Case 2 or Case 3, we have to derive separate asymptotic tests

for Case 2 and for Case 3.

Assume that we are in Case 2. For this case, we have the

following theorem:

Theorem 2.3.3. If our model is given by (2.0.1) and we wish to

test the hypothesis HO: B= = aa versus H1: B= # aa when
1im (N-k)/N = t < 1 then the asymptotic null distribution of
N

2 -2
2

(M) (N-K) B (2rk) B (NN - 1)

N-¥

)

where A is the likelihood ratio test statistic, is a normal
distribution with mean 0 and variance 1. The asymptotic test of

HO: B= = aa versus H] : B= # ca would be to reject HO when
3 - ) e
NNk DE 2Kkr) E () a2/ -1) > 2

and do not reject otherwise, where Zq is the g fractile of a

standard normal distribution.
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Proof: Consider the following sequence of statements:

A2/N

p p
1 (Gl =T (1/1+¢.,,),
i=p-r+l i i=p-r+l L

p
T (ks Nk / (8-K)E)),
i=p-r+l

P N-k 2=
n (S 1/ (T (N=K) 3N "0 ))
i=p-r+l N M

p A
i
i=p-r+]

)(1-(N-k)EN" Ty

/
iN + O\N)),

Ayra ot § v om).

i=p-r+l

The above equality can be written:

2 - 2
(T M wnee? = - § v oo,
i=p-r+i
The asymptotic distributio. of E viy can be easi]y obtained
i=p-r+]
from Theorem 2.2.2. The limiting distribution of Z viy 1s the
i=p-r+l

distribution of

.5 1

1 .
vy = <tri{s -1} Q=5 ~1)Q,).
i=p-r+l i t Bt 2

The diagonal elements of Q‘ and Q2 are all independent, each with a

normal distribution with mean 0 and variance 2. Since the trace of a
r

matrix is the sum of the diagonal elements, we know that Z P

i
i=p-r+l
is normally distributed with mean 0 and variance 2r(])( -1). We

therefore conclude that




[(N-k)/(ZrNk)%]_E ViN
i=p-r+l

has an asymptotic normal distribution with mean 0 and variance 1.

Finally we may state that
2 -2
(N(N-K))E(2rk) #( () T2/ Ro0)

has an asymptotic normal distribution with mean O and variance 1.

Q.E.D.

We now talk about the case where k » » as N + «, but
1im (N-k)/N = 1. In this case we have the following theorem:
N
Theorem 2.3.4. If our model is given by (2.0.1) and we wish to test
the hypothesis Hy: B= = ca versus Hy: B= # aa when Tim(N-k)/N = t = 1

N>
and k » « as N » =, then the asymptotic null distribution of

-3 !
N(2rk) ™ 3( () "2/

is a normal distribution with mean O and variance 1. The
asymptotic test of HO: Bz = aa versus H]: B= # «a would be to

reject HO when

N(2rk) BNk AN ) sz

1-a

and do not reject otherwise, where ZB is the g fractile of a

standard normal distribution.

e —————— e
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Proof: Consider the following sequence of equations:

2/ P p
p 1l (/a5) = 1 (1/1+6,y)
i=p-r+l i=p-r+l

p -
T (/4 (k/N-k) 4o, /NKE))

i=p-r+}
P N-k S )
= 1 GROO/0+N-KIKEN )
i=p-r+l
o p o -
. (Hﬁk)r n (1-k3N ]viN + o(vZkh)
i=p~-r+]

A P -
= SUTRNY E vi) + 0N
i=p-r+l

The above equality may be written

-2 ] 2
(L L L R ]
i=p-r+l
The asymptotic null distribution of E v;y can be obtained
i=p-r+l
using Theorem 2.2.4. The limiting distribution of % ViN is the
i=p-r+l

distribution of the trace of Q which has a normal distribution with

mean 0 and variance 2r. The theorem now .follows. Q.E.D.

Remark: When a is the zero matrix, Theorems 2.2.2 - 2.2.4 are all

still valid.




2.4. Consistency of the Tests

In this section, we discuss the consistency of the tests
from the preceding section, i.e., we show that the power of the
testsgoes to one as the sample size increases when a fixed
alternative is assumed to be true. We will use the following

theorem to show the consistency of the tests.

Theorem 2.4.1. Assume that an a-level asymptotic test rejects

when a test statistic is greater than a constant and does not
reject otherwise. If the test statistic goes to infinity almost

surely as N does for a fixed alternative, the test is consistent.

Proof. This theorem follows from the definition of a consistent

test. Q.£.D.

In the next theorem, we discuss the consistency of the test

given in Theorem 2.3.1.

Theoren 2.4.2. If N'F(I,-F'a'(aFF'a')”'aF)F' goes to a finite

matrix of full rank, the test given in Theorem 2.3.1 is consistent

Proof. For our fixed alternative, let us consider = = 0’ where =,
is a matrix whose row rank is greater than p-r. Since we assumed
that N']F(IN-F'a'(aFF'a‘)']aF)F' goes to a finite matrix of full

rank, the matrix

N']:OF(I-F'a'(arF'a')‘1aF)F'56

goes to a matrix RO of rank greater than p-r. We can show (see
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the proof of Theorem 1.2.1) that w']T converges almost surely to
l/t(1p+z']R0), and that the rth smallest eigenvalue of Wl goes
almost surely to the rth smallest eigenvalue of 1/t(Ip+X‘]R0).

In this case, t = 1. Since RO is of rank greater than p-r, the

rth smallest eigenvalue of W']T goes almost surely to a number

greater than 0. We therefore have that

Ap'Ap_]'-..'Ap_r‘{_]

goes almost surely to a number greater than one. We can now

state that

-2 log A = -2 log(> _-x

2N
: p p_]'...'Xp_r+])

goes almost surely to positive infinity. The theorem follows

e through an application of Theorem 2.4.1. Q.EJD.

-y

For Case 2 and Case 3, we have to change what our fixed alterna-

e

tive is. In these cases, the number of parameters is assumed to
increase with the sampie size. It is fairly evident that the
fixed alternative we picked when k is fixed makes no sense for

Case 2 or Case 3.

| We now describe what our fixed alternative will be. For each
L N, let us pick = = “on SO that the rth smallest eigenvalue of

3

i (2.4.1)  N7'= F(I-F'a'(aFF'a') TTaF)F =y,

is fixed at Yo > 0. We are fixing the rth smallest eigenvalue of

the noncentrality parameter of T. Let us also pick = = “oN 5 that

the matrix given by (2.4.1) converges to a finite matrix.
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We now consider the following theorem which is concerned

with the asymptotic test for Case 2.

Theorem 2.4.3. The asymptotic test given in Theorem 2.3.3

(Case 2) is consistent.

It

Proof. We can show (see the proof of Theorem 1.2.1) that W~
converges almost surely to 1/t(lp+z']R) and that the rth
smallest eigenvalue of w’]T goes almost surely to the rth smallest
eigenvalue of l/t(1p+£‘1R). For our rixed alternative (see

paragraph preceding this theorem), R = R0 and the rth smallest

eigenvalue of 1/t(Ip+£']RO) is greater than 1/t. We know that |

“2/N _ S
A = A Apa1 e Appe]

goes almost surely to a quantity greater than ((N-k)/N)r.
2

Therefore, since (N(N-k)/k)* goes to infinity as N does,

(N(N-K) / (2rk) ) ( () a2/ M) "

goes almost surely to positive infinity. The theorem follows

after we apply Thecrem 2.4.1. ) QUED:
For Case 3, we have a similar result:

Theorem 2.4.4. The asymptotic test given in Theorem 2.3.5 (Case 3)

is consistent.

Proof. We omit the proof since it is almost identical to the proof

of Theorem 2.4.3.




CHAPTER 3

ESTIMATION OF UNKNOWN LINEAR RESTRICTIONS ON
THE PARAMETERS OF A GENERAL LINEAR MODEL

3.0 Introduction

In this chapter, we discuss a very general linear model called
the Potthoff-Roy model. This model can be formulated in the following

matrix equation:
(3.0.1) X = F] = F2 FES

where X is a cxN matrix of observed values, F] is a known cxp
(c > p) matrix, = is an unknown pxm matrix, F2 is a known mxN (N>m)
matrix, and E is a cxN matrix of errors. The columns of E are indepen-
dent with the same normal distribution having mean vector O and covari-
ance matrix Z. We require that F] and F2 are of full column rank and
full row rank respectively. '

The classical multivariate linear regression model can be seen
to be a special case of the Potthoff-Roy model by letting F] = IC.
If we let F2 = (1,1,...,1) then the Potthoff-Roy model reduces to a
simple "growth curves" model (Gleser and Olkin [1964]). Estimation

of the parameters in the Potthoff-Roy model under various hypothese’s

has been discussed by Potthoff-Roy [1964], Rao [1965], and Gleser

and 0lkin [1969].

B Sy
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We want to find the MLL of =, and of two other matrices U]

and a which satisfy

(3.0.2) Hoos F3 = ab,

where U, is an unknown rxp (r < p) matrix, Fy is a known mxk (m > k)
matrix, a is a unknown rxs(s:r) matrix, and b is a known sxk matrix.

Throughout this chapter, we assume that
(3.0.3) =0 -l

where 02 is an unknown constant. f

In Section 3.1, we reduce our model (3.0.1) and hypothesis ?

(3.0.2) to a canonical form. Section 3.2 contains a derivation
of the MLE's for the reduced model, and also gives the MLE's for
the general model. Section 3.3 discusses several special cases
of our reduced model. In Section 3.4, we consider consistency of

the estimators in our models.

3.1. Reduction of the Model to a Canonical Form

Consider the following model and hypothesis: '
(3.1.1) X=F,=F,+E,
(3-].2) U] = F3 = (‘.b,

where X]F],E,FZ,E,U],F3,Q, and b are defined in the introduction

to this chapter. In this section, we reduce (3.1.1) and (3.1.2)

to a simpler, or canonical form.




T e

Let us discuss the following transformation:

(F1F) 7% £l
ety A orige
Yz 1

"
(3.0.3) ¥= |

where V] is a cxc-p column orthogonal matrix which satisfies

ViF] = 0. Whenever we write the square root (or negative square

root) of a matrix, we mean the unique, symmetric, positive definite

square root. The columns of Y are independently distributed with a

: : 7 3 . o2
normal distribution having covariance matrix o -Ic.

The mean of Y is

1 2
(FIF.)"% F! (FIF)E = F
G L ARG S e e
Let
) S S . Y
R R R (AT AT
L

where V2 is a N-mxN column orthogonal matrix which satisfies
VoFs = 0. By Theorem 3.3.1 of Anderson [1958], the columns of X*
will have independent normal distributions with covariance matrix

oz-lc. The mean of X* is

FY 2
X Y b (F]'F1)2 ;(FZFé)z 0
(3.1.4) E(x*) = E(Yz)(FZ(F2F2) =¥y = 5 ol
If we let
2 2
(3.1.5) * = (F]FY)' T(FZFZ)L .
our hypothzsis (?.1.2) in terms of =* becomes:

IR I R e Gl 4 T b
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-2 %
' 2 . (i =
(3.1.6) U](F]F]) *(F2F2) Fy = ab.

We will now make several substitutions which will make our hypothesis
(3.1.6) simpler.

Let
1 '%
(3.1.7) U, = Ui (FiF )75,

- U "%-’ ' ] ".' -%
F4 e (F2F2) F3(F3(F2F2) F3) ’

3
i

With these substitutions our hypothesis becomes:

(3.1.8) U2 E*F4 = ad,

where F4 is a known column orthogonal matrix.

We now write the joint distribution of X%, X§, X§ and Xg:

By
2'2 Np 5
) T exp(-20°[tr(X5-z) (X5-2%) " +

(3.1.9) f(XT,X* X%, X%)=(2nc 3

2°3"4

tE X§X§ +tr X§X§'+tr XEXZ']).

From a quick examination of (3.1.2), we conclude that we could get

the MLE (82) of czlif we knew the MLE (2*) of =*. OQur result would be
~ ] 2 2 ' ' ' '
(3.1.10) 67 = ltr(X§-2%) (X¢-2%) '+tr XEX5'+tr X5X5'+tr XEX3'].

From (3.1.9), we also know that Xy is a sufficient statistic
for =*, U2 and a when 02 is treated as a fixed quantity. It is clear
that finding the estimators of U,, «, and =*, which satisfy (3.1.8)

and which maximize (3.1.9) is equivalent to finding the estimators

of Uy, a, =* which satisfy (3.1.8) and which minimize
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) tr(X? - z*)(x1 L

w,

Therefore, we need only consider functions of Xy when we find MLE's
Of Uz, Qy and E*.
We have reduced our estimation problem to the following problem.

Let our model be

(3.1.11) X? = g% 4 B¥,

where Xf is a pxm matrix of observed values, =* is an unknown pxm(p<m)

matrix, and E* is a pxm error matrix. Each column of E* is distributed
as an independent p-dimensional normal distribution with mean vector O

and covariance matrix oz-Ip, where 02 is unknown. We want the MLE's

of =*, and of two other matrices U2 and a which satisfy

£3.1.12) U, =%k, = ad,

M
as’
N

-
{

where U2 is an unknown rxp matrix, F4 is a known mxk column orthogonal

matrix, a is a unknown rxs matrix and d is a known sxk matrix. We
refer to (3.1.11) and (3.1.12) as either the reduced model or the model
in canonical form. Note that s<r<p<k and k-s>p.

In the next section, we will find the MLE's of the parameters in
the reduced model. We will aiso use the MLE's of =*, «, and U2 in
the reduced model to get the MLE's of =, «, and U] in the general
model (3.1.1) and (3.1.2). It should be noted that the MLE of o

for the reduced model is not the MLE of 02 for the general model.

Equation (3.1.10) gives us the MLE of o“ for the general model.
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3.2. Maximum Likelihood Estimators for the Model in Canonical Form

In this section, we will get the MLE for the parameters of the
reduced model described at the end of Section 3.1. We will also give
the MLE for the parameters of the general model (3.1.1), (3.1.2).

Let our model be the model described at the end of Section 3.1.
As in Chapter 1, it is clear that if we find one set of MLE's (02,&)
of U2,a then AGZ,A; is also a set of MLE's of U2,u where A is any
invertible matrix. Because of this, we will require that U2 be row
orthogonal. .

The method of finding the MLE's of UZ’ =*, and a will be similar
to what we did in Chapter 1. We will 1) fix Up,a®; 2) find the
MLE's of =* and a as functions of the fixed values of U2,02;

3) substitute this estimate of =* back into the likelihood; and

4) find the maximum likelihood estimator of Uz,oz.

Part 1. yz,g? fixed or given

We will now transform X? into a form in which the estimators
of =* and a are easy to see. Let

( ) (P1) ’UZ)
3.2. P = = X4
By’ W

where V4 is a p-rxp row orthogoral matrix which satisfies V4U‘ = 0.

2
Each column of P has an independent p-dimensional normal distribution

with covariance matrix cZ'Ip. The mean of P is

U2 U2 u, =*
(.2.2) EC) = EGDI0) = (D0 = (F L.

2
4

B v—

h B — NE— I—— I —— J



Let
My B
(3.2.3) R= (Rz R4) = P(Fy Vi),
i (Pl‘F4 Pl'Vs)
PyrFy Pyl

where Vg is a mxm-k column orthogonal matrix that makes (F4,V5)

an orthogonal matrix. By Theorem 3.3.1 in Anderson [1958], the
columns of R have independent p-dimensional normal distributions with
covariance matrix cz-lp. The mean of R is

R] R2 " Uor =k F4 U2 =% V5 ad Uy =% V5

(3.2.4) E(R) = E(R3 e I 2

. = )=(V:*F V":*V)'
4 4 - 4 - 5 4= "4 T4 © 5

From the above expression it is easy to get the MLE's. Since all
elements of R are distributed independently, we have that the MLE of
Vg =* Fy is Ry, of Uy =* Vg is Ry, and of V, =* Vg is R;. We can
apply a standard theorem in multivariate regression to get the MLE

of a:

(3.2.5) o R]d'(dd')“.

We now can get the MLE of =*:

U R,d'(dd")"'d R y
AL 2 1
3.2.6 * = BNe)
(3.2.6) (D7 ) (Faug)
-1
R,d'(dd')'d R, F!
1 2. fa
= (UL,V! o
UV () ) ()

If we go backwards, using first (3.2.3) and then (3.2.1), we

get




= = USU,X¥F,d' (dd')Td Fyevgy

2Y2 atVgVaXiFaFy + UpUpXiVeVs + VgV, K

Using the facts that Ip - VgV = U5, and Iy - VgV = F4Fy, we get

= = =11 -d! l-] 1
= = X3-UpU,X3F,(1,-d' (dd') T a)Fy,
N ' -1

a = UZXfF4d fdd®) .

It should be noted that neither =* nor a is a function of 02.

We summarize our results so far.

Theorem 3.2.1. If our model is X? = =* + E* where each column of
E is distributed independently with a p-dimensional normal

distribution having mean vector 0 and covariance matrix 02-Ip

(o2 is a fixed quantity), then the MLE's of =* and a which satisfy
the hypothesis U2 =% F4 = ad, where U2 is a fixed rxp row orthogonal
matrix, F4 is a known mxk column orthogonal matrix and d is a

known sxk matrix are

(3.2.7) % = X$-UpUKIF !

(i (3 55 [
2UoX3 4(Ik-d (dd') 'd)F

4’

n

& t "]
(3.2.8) o U2XfF4d (dd*} .

Part 2. Substitution of our derived MLE's back into the likelihood

)

and maximization with respect to U,,o".

~

In this part, we find the MLE's of U, and ¢¢ using =*, a as

defined by (3.2.7) and (3.2.8). We now write the distribution of

XT after substituting = for =%,

+ USU XAV Ve + Y,V X*sté'

j
1
:
i
4
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(3.2.9) F(X¥,=%,0%,0,) = (2102) 7% Mexp(-202) tr(X§-2¢) (X4-24)*

If we want to maximize (3.2.9), all we have to do is minimize

i

Q = tr{xf-=2)(xy-2%)",

]

' ' |‘] ' ! 1 -1 1y
tr(UsU,XF, (1, -d" (dd" )™ d)F,) (UpU,X$F, (1, -d" (dd") " 'd)Fy)",

1(‘] Lyk i
(3.2.10) tr(UZX?F4(Ik—d (dd*) d)F4XT U2).

Minimizing Qsubject to the condition that U3 is row orthogonal
(i.e., U,U5 = r) is a straight forward application of the Courant-
Fischer Min-Max Theorem (sec Bellman [1970]). If we let the columns
of ﬁé be the eigenvectors associated with the r smallest eigenvalues
of

(3.2.11) M = XIF,(1,-d"(dd")"Vd)F

1

then 02 minimizes Q and therefore is the MLE of U2. The minimum

value of Q is § Ay where A, is the ith largest eigenvalue of M.
i=p-r+]

At this point we should talk about zero eigenvalues of M. Since

the rank of Ik—d‘(dd')_]

d is k-s, M will have full rank with
probability one if and only if k-s > p, i.e:, M will have zero
eigenvalues with probability one if end only if k-s < p. In all
cases in the succeeding sections, we assume that k-s > p.

The MLE of 02 is easy to get since we know the minimum value

of Q. The MLE (52) of o2 in our reduced model is
ot = ﬁl Y Ays
» i=p-r+l

where 2 is the ith largest eigenvalue of M.

E

-
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Let us summarize our results in the following theorem:

Theorem 3.2.2. The MLE's of UZ’ a, =*, and 02 in the reduced
model (3.1.11), (3.1.12) are:

o3
"

u2x7F4d'(dd')",
1

!
*
|

= X{-USUXF (T, -d" (dd") " d)Fy,

2 1
o “(—~)§ A,
TR j=p-rtl |

where Ai is the ith largest eigenvalue of M, the rows of 02 are
the eigenvectors associated with the r smallest eigenvalues of M,
and

M= Xqu(Ik-d’(dd') 'd)F&Xf.

Remark I. If we multiply Qz and « on the left by any invertible

matrix, the resulting matrices would also be MLE's.

x are of the form

Remark II. A1l matrices which are MLE's of Uz,u

HGZ, H& for some invertible matrix H.

Theorem 3.2.2 gives us the MLE's of the parameters in our
reduced model. If we use the MLE's of =*, U2 and a given in
Theorem 3.2.2 for our reduced model. and also use (3.1.3), (3.1.4),
(3.1.5), and (3.1.7), we can get the MLE's of =, U], and « in the
general model.

Recall that the MLE for o“ in the general model is given by

€3.1.10):




Al il
D o° = geltrxy-

~

*)(x;-E*)'+tr XSKS'+tr XEXS‘+tr XEXE'].

ESgw TR SEPSORTRE—

Following (3.2.11), we found that the minimum value of

tr(X*-;*)(X*-;*)' is E A;, where ). is the ith largest
! L i=p-r+l ] !
eigenvalue of M which is defined in Theorem 3.2.2. If we use the

definitions of X§,X§ and XE’ we get

t ' U= ' [ -1 1 [ 1 ']
tr XEXS'+tr XEXE'rtr XEXE'=tr(XX'-F{(F1F,) T FiXF5(FoF5)

33 253 FoX').

2

Combining the preceding arguments, we finally have

l

M e “ley, -1
g = ok } 2. Ate (XX -F [FIF.) "EXRFA(F.ER) "FaX' )}
NCh ) el A LR Tl L

where Ay is the ith largest eigenvalue of M.
We now give the MLE's of U], =, a, and 02 for the general

(:3 mode! in the following theorem.

Theorem 3.2.3. The MLE's of U2, a, =*, and 02 in the general

model (3.1.1) (3.1.2) are:

~

- o
U] = Uz(FlF])ds

= U,X3F,d" (dd") 7,

[=J8%
1

271
~ P gt
a S = (FJF)7E 2(F )R,
A2 - ] [ 1 '] [ [ (=] ’1 ]

where A is the ith largest eigenvalue of M, the rows of 02 are
the eigenvectors associated with the r smallest eigenvalues of M,

and
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- ' |'] [l [
(59 M= X7F4(Ik-d (dd') d)F4Xf,

>
*
"

ek -3
1= (FyFy) 2 FyXFR(FoF5) 7%,

o n":l [ |‘] 2+
Fa = (FoFpl = FolFaiBal Fal s,

[ 1‘1 3
= B{FL(FE21T"F )75,

(=8
|

=% = _A|A —-d 1y 1 '
i X? U2U2X‘-'l‘F4(Ik d'(dd') d)F4.

Remark I. If we multiply ﬁ] and a on the left by any invertible ;

matrix, the resulting matrices are also MLE's.

Remark II. A1l MLE's of U] and o are of the form Aﬁ], A; where A

is some invertible matrix.

Remark III. The rows of ﬂ] are themselves eigenvectors corresponding

to the r smallest eigenvalues of f

-2 e 2
(FAF,) 72 M(F3F,)2,

3.3. Special Cases

The models we consider in this section are all special cases
of our reduced model. It should be noted that our reduced model can
be considered as a special case of our general model if we take

F

1 17 I F2 = Im’ and F3 to be a cclumn orthogonal matrix.

p’
Consider the following situation:

(3.3.1) Xy = Estess i = e

where Xs is a p-dimensional vector of observaticns, &4 is an
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‘:! unknown p-dimensional mean vector, and e; is a p-dimensional

error vector. Each e, is distributed independently with a normal
distribution having mean vector 0 and covariance matrix 02-1

(o2 is unknown). We want to estimate £ under the hypothesis that
(3.3.2) UpEy = o3 i=1,2,...,m

where a, U2 are unknown rx1 and rxp matrices respectively. If we ‘
let

4

]

(x]’x29---’xm)’ S (51352’---1£m)9

E* = (e],ez,...,em),

then (3.3.1) and (3.3.2) can be written

Xf = =% 4+ X,

@ U2 E*F4 = aod,

where F4 =1 andd = (1,1,...,1). In this form our model looks

identical to the model in Theorem 3.2.2. Using Theorem 3.2.2, we

get the following application.

i

Application 1. Assume our model is x.

3 €i+ei and we want to

estimate U2, gi, and a subject to Uzgi = a, where X5 51, s U2,

and o are defined above. Then the MLE's of UZ’ as Ess and 02 are:

a = U2X,

2R B

£5 = %;=UsUy(x4-X),

~2 1

= =t Nes
TP j=p-r+1 !




N

L/

where A is the ith largest eigenvalue of

m
M= ] (x;=x)(x;-x)'

the rows of 62 are eigenvectors corresponding to the r smallest

eigenvalues of M, and

X %’
X = X./m.
gey

Remark I. Aﬁz and Ax where A is an invertible matrix are also

MLE's of U2 and a. s

In all the theorems and applications discussed so far, we have
remarked that the estimator of the unknown linear restrictions
(ﬁ] or ﬁz) is not unique. In fact any invertible matrix times ﬁ]
or 62 would also be a MLE. In the application we now discuss, we
require that the last r columns of our maximum likelihood estimator
of U2 are the identity matrix (see the beginning of Section 1.2 and
also the discussion preceding Application 4 in Section 1.3).

We will now consider the following model:

§3:3.3) Y5 Vi+fi; T e TR

1}

Z-

i = Hvgtatges 4= 1,2,....m;

. are p-r and r dimensional vectors of observed

where Y5 and z;

values, v is an unknown p-rx1 vector, H is an unknown rxp-r

parameter matrix, and fi’ g; are p-r and r dimensional error
vectors which are distributed independently of one another with a

normal distribution having mean vector O and covariance matrix

o1 and 02

p-r -Ir respectively.




€5

c:) We will now rewrite the above model in such a way that it

can be easily seen to be a special case of Theorem 3.2.2. Llet

X = (y], yz’-..a ym)’ B
1 Zys Zpseees 20 Bv-l+a, BV2+a,...,BVm+a

V-I ,Vz,..., Vm

)

fis fosenns fm)
g]v 92,'-" gm

E* = .

then (3.3.3) can be formulated in the following way:
XT = zKk4EX,
(-H,1) =* = a(1,1,...,1).
It is clear that the above model and hypothesis is exactly the

same as in Application 1, with the exception that U2 must have the

identity as its last r columns. If Uy = (U]Z’UZZ) - Uy, is rxr -

is the estimate of U2 in Application 1, then we can get the MLE

of H from the following expression:

PR e Al 400 L
(-H,1) = (Up0Up151) = Upp{Ung,Unn) = Upa(Uy).

~

Since (-H,I) is an invertible matrix times 02, it is also a MLE

of U,. It is clear that when we substitute (~ﬁ,1) into (3.2.10)

A

for UZ’ that Q is minimized. Since (-H,I) has the right form

~ ~ A

H = 'U22 Uz]-

We summarize our results in the following application:




Application 2. Assume that our model is

¥y ® vi+fi; =520 00, my

z. = Hvi+°+gi; A=, 2 e oIS

where Yis Zps Vis o, H, fi’ and g; are defined above. Then

the MLE's of H, «, Vis and 02 are:

-~ — A_'I ~
H = -Uys(Usy)s
. o ¥
LS ('H9I)(_)a
Z
V. Y. " Y-'y
-1 i
an 3= 0 - oy enaye Y 2,
Hv.4a % : i

n

0 A /mp,
i=p-r+]

where A is the ith largest eigenvalue of M, the rows of (62],022)
are the eigenvectors associated with the r smallest eigenvalues of

M, and
—y Y; -y
M= Z P
§=1 z]-z z; -z
Remark I. H,a are unique.
Application 2 is a generalization of the model considered
first by Gleser and Watson [1973] and later by Bhargava [1975].

The proof utilized in these papers cannot be generalized to cover

our case. Their model {s a special case of Application 2, where

a = 0.
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(:’ We will conclude this section with a model which can be con- ]
sidered a combination of the "error-in-varijables” model and the
usual linear regression model. In the model we discuss there are

some variables which are measured with error and other variables

which are measured perfectly. Consider the following model:

1,2,....m; |

. = ki i
y] v1 fI’

Z,

tad.+q. i
i Hvl d1 g],

152 500 M3 |

where Yis Vio Z4 s H Vi f and g; are the same as in Application 2,

a is an unknown rxs matrix, and di is a known sx1 matrix. v is the
variable which is measured with error and d; is the variable which
is measured perfectly. We may apply Theorem 3.2.2 in a manner
similar to what we did for Application 2 to get MLE's of H, Vis and

.
c;’ a. If we do this and use the fact that d = (d1,d2,...,dm), we get

Application 3. Let our model be

i

2 s

; AfL i
y1 V1 f)’ L

Z.

; Hvi+adi+gi; i = 1,2,...,m§

where Yis Vis 255 His Vi fi’ and g; are the same as in Application 2,

a is an unknown rxs matrix, and di is a known sx1 matrix. The MLE of
Fite oS Vis and 02 are:

- A
H = -Upp Uy,

A - m

b
(1 ]

y m =3
z;




h______' . T —

-
~—
1

e " . J . Y. A
= () - GHIVTEDED THDEG)) - adid,
1 1

of = E Ay/mp,
i=p-r+l

where A; is the ith largest eigenvalue of M, the rows of (62],022)
are eigenvectors associated with the r smallest eigenvalues of M,

and

. m
Nan )

m oy my
M= Ty
DAMREGREERIPAT

g.a0)7 (]
i 4D

Y. m
J ] 1‘1 [
REPRELIDIEIR N

-

Remark I. H, o are unique MLE's.

3.4 Consistency of the Estimators

In this section we discuss the consistency of the estimators
from Section 3.2. We first work with our reduced model. A1l the
results for the reduced model are rigorously proved. For the general
model, we merely state our results since they follow from the
results for the reduced model.

Let us consider 02,& the estimators of Uz,a in our model. In
order to make a discussion of the consistency of Gg and o meaningful,
we have to place restrictions on U2 and 02 which will make them
unique. Our arguments here are the same as in Section 1.2 of
Chapter 1. Let (Uﬁ,a*) be the unique members of the class of
matrices (Uz,a) which satisfy UE E*Fa = od, where UE has the
identity matrix as its last r columns. Let 65 be the unique MLE

of U2 which has the identity matrix as its last r columns. In




T

Application 2 and Application 3 of the previous section, we

satisfy this requirement. We will show that 05, o> are strongly

consistent estimators of U}, a*, First, we will prove some useful

lemmas.

Lemma 1. Assume that

-1

& 1
m :*F4(I

k-d'(dd')' d)=*'

converges to a finite matrix R. Then

M = mTIXAF, (1, -d" (dd') TN )Pt

goes almost surely to R+(l-t])u?-l where

P

ty = im (m-(k-s))m™! = Vim (m-k)n™!.

Mo Mmre

Proof. Consider XT which is a pxm matrix. Each column of Xf has an

independent p-dimensional normal distribution with covariance matrix

OZ'Ip' The mean of XT js =%, XTF4 is a pxk matrix. Since F4 is a

column orthogonal matrix, each column of XTF4 is distributed

independently with a p-dimensional normal distribution with

covariance matrix 02

L * ie =k
Ip. The mean of X F4 1S 2 F4. We have

! “ayr i xeen]

y (=%+E%)F 4 (I,-d' (dd") " d)F ,(=*4E%)"

1

X*Fa(Ik-d'(dd')

(3.4.1) = m-]E*F4(Ik-d'(dd')']d)F&:*'+m°]E*F4(Ik-d'(dd')— djEg=s"

.’—* rd? ' '.l ' '
E F4(Ik d'{dd*) "d)FiE**.

T ExF (1, -d" (dd ") ) FpER e 4

~

By our assumptions and Lemma 2 of Chapter 1, we have that the 2nd

and 3rd terms on the right-hand side of (3.4.1) go almost surely to O.




By our assumptions, the 1st term goes to R. If we use Theorem 4.3.2
in Anderson [1958] we find that the last term has the same distribu-

tion as K

He—13
<
=

where u. has a normal distribution independent of uj (i #3) with

mean vector 0 and covariance matrix oe-lp. We know that
k-s k-s
1 )‘ k-s
= ¥ wuul==2 ¥ u.ul/k-s
m .2y 1 mooLgy i
goes almost surely to (]-t])oz.lp. If we combine all the above
statements, we get
Lo, (1, -d" (dd' )" Td)F kst o Re(1-t }o?1
m 4* "k 4 1 p°

Q-ECD.

Lemma 2. If R is finite of rank p-r, then the only matrix which has
the identity as its last r columns and when multiplied by R yields

0 is UE.

Proof. m']UE(E*F4(I-d'(dd')']d)Fa;*')=m']ud((1-d‘(dd‘)']d)F&z*')=0.
Since this is true for every m, it is true in the limit, i.e., U§R=O.
Since R has rank p-r, it has a unique r-dimensicnal space of eigen-
vectors associated with eigenvalue 0. Let us consider a matrix whose
rows form a basis for this eigenspace. If this matrix is to have

the identity matrix as its last r columns, it is clear that this

matrix must be U%. QxEriD
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Theorem 3.4.1. Under the assumptions of Lemma 1 and Lemma 2,

0% is a strongly consistent estimate of us.

Proof. By Lemma 1, we know that m—]M goes almost surely to
R+(1-t1)021p. Since the eigenvalues of a matrix are continuous
functions of that matrix, we are able to conclude that the r

smallest eigenvalues of m']M converge almost surely to the

2

smallest eigenvalue of R+(1-t])021p which is (]-t])o By

Lemma 2, U§ is the only matrix with the identity as its last r
columns which satisfies U§R = 0. We may conclude that U§ is the
only matrix of the right form whose rows are eigenvectors

associated with (1-t])02 the smallest eigenvalue of R+(]-t])02-1p.
Let ﬂ§m be the estimate of U§ if we have m observations.

Let 62m be the estimate given in Theorem 3.2.2 used to generate

PN

U;m, 60

X % % i R _
Upn = (U300 1) = (G204 00) = (02D 7y

~

‘' = (]) ( / 5 ¥
where U, = (U ',U5 '), Since (UZm)'(UZm

almost surely. Let us pick any subsequence of GZm' Since OZm is

= Ir’UZm is bounded

bounded almost surely, there must exist a subsequence of this
subsequence which converges. Let ﬂzﬂ denote the convergent

subsequence. Also let

C= lim U
Moo an

Every row of C is the limit of a sequence of eigenvectors of

m']M associated with one of the r smallest eigenvalues. Since




‘\
x:

02

m‘]M converges almost surely to R+(]'t1)°2'lp’ each row of C must
equal some eigenvector of R+(1-t])021p associated with (1-t1)02.

Since

Hmt, U =00 51,
m

e 2T
C is of full row rank and therefore its rows must span the space
of eigenvectors of R+(1-t])021p associated with (1-t])02. We

already showed that U§ spans that same space. We therefore have
= 1cf2)y~1e (1) o(2)y o (p(2)4-1
ug = ()7 et = ety e
where C = (C(]),C(Z)).

Let ||A]| denote the largest element of A. We will now show

that ||0§ - U5l| goes to 0 almost surely.
"m

()% *| | = ~(2)y-1 1 20t
|l”2nm'UglI-!|(U§“i) Uy, - (ct®) Ty

< 112N 0, -(c?) g
m m

|A
[@ns
~N
=
—
=
Ny —~
=1 N
~—
~
!
—
]
—~
o
—~
nN)
~——
~
1
PSS
-+
=
o
no
~—
1
it

(3.4.4)

The first term on the right-hand side of (3.4.4),

||']|(ﬂ§§;)']-(c(2))-1l!a is arbitrarily small since GZ“N is

. - N
bounded almost surely and U§3> converges to Uéz). Since (C(z/) .

m m

c{@)171110,, -c|| goes
J |

110,

is

bounded and 02n goes almost surely to C, ||
m

almost surely to zero. Combining the above statements, we have that

UEn goes almost surely to UE. We have shown that for any subsequence
m
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of UEm there exists a subsequence of that subsequence which

converges to UE almost surely. U§ must converge almost surely

to U§. 0.£.0.

We now discuss the consistency of a* = U

Theorem 3.4.2. If (dd')']-m converges to a matrix with all

elements finite, then o* is a strongly consistent estimate of a*

where o* satisfies U§-:—*F4 = g*d,

Proof. Note that

¥ 1 r']
UEXTF4d (dd')"",

tel
*
"

U§(3*+E*)F4d‘(dd’)",

¥ i a"‘A- [ [, e

U3=*F 4d' (dd") " +USEF,d' (dd") 7",

Since 05 goes almost surely to U%, ng*Fdd'(dd’)'] goes almost
surely to

Uy=+F,d' (dd') ™) = a*ad' (dd') ™! = ax.

If we apply Lemma 2 of Chapter 1, we get that E*F4d'(dd')']
goes almost surely to 0. We therefore have that GgE*Fad‘(dd')']

goes almost surely to zero. . E.D;

We now show that the M'E of 02 in the reduced model is not

consistent. We have already mentioned that the r smallest

'I N

eigenvalues of m™ 'M go almost surely to t]c‘. Since A,/k for

i = p-r+l,...,p, are the r smailest eigenvalues of
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X*F, (1 -d'(dd')1d)F4X*'/m, we have

2’ ) E ] 8efny 2

o© = — Ay = — (r./m) > H1-t,)o".
R i=p-r+l ! P igp-rﬂ L P L

Straightforward substitution yields the following result:

a.5. 1

;*Fa(lk-d'(dd')-]d)F&;*'/m ! R+(]_t1)02(1p-Ué(U2Ué) e

2)-

Let us now consider the parameters in the general model. For
the definitions of all terms see Theorem 3.2.3 and the beginning
of Section 3.1. Let ﬂf be the MLE of U] which has the identity
as its last r-columns. Let a* be the corresponding value of a.
Let Uf,a* be the parameter matrices in the population which
satisfy UT 5F3 = a*b, and Uf has the identity matrices as its

last r columns. We could prove the following theorem in an

analagous way to what we did for the reduced model.

Theorem 3.4.3. If our model is the model of Theorem 3.2.3 and if

N1 (1,-d" (dd") Ta)Fg=* =

NV (FIF ) B2 (FFS) 3, (1 -d'(dd');]d)F'(F FL)E=(FIF, )2
11 = ettty a\Fata) "= tFFy

converges to a finite matrix R of rank p-r, and if t]=1im(N-(k-s))N'],

N>

then

i) N_kx*(F4(Ik-d'(dd')—]d)F&)x*')goes almost surely to

2.1 .
R+(]"t])0 'Ip$ {

A 2
ji) the rows of Uy are eigenvectors of (FiF])ER corresponding to

eigenvalue 0;
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iii) ﬁf is a strongly consistent estimate of Uf;

iv) if N-(dd')'] converges to a finite matrix, then a* is a

strongly consistent estimate of a*;

1
v)_
Nc izp—r+l

A; goes almost surely to (l-t])ozr/c.
Since
(o2) " er (XX -F, (F3F,) TR IXFA(F,Fa) T X1)
V11 172" 2" 2 2
has a chi square distribution with cN-pm degrees of freedom, we
have :

4 -1 2 a.s. 1
(3.4.6)  tr(XX'-F(F{F)) T FiXFo(FoF5) T 'F X" ) /0 (cN-pm) > ° ]

provided that cN-pm goes to = as N does. If lim Nﬁm = t2, we have
N->eo

tr (XK =F (FYF ) TR OES () TR X ) Ne o o2(1-s/c(1-t,))

i) a2 209 2 e

It we combine the above statement and v) of Theorem 3.4.3, we get

that
6% 48 o2(1 + L((1-t,)r-(1-t,)p)).
Since p > r, and 1-t, = 1im [ > 1im X5 = 1t (m > k), o2 under-
N—)-co x N-)Oo

estimates 02.




CHAPTER 4

TESTING THE EXISTENCE OF UNKNOWN LINEAR
RESTRICTIONS IN A GENERAL LINEAR MODEL

4.0. Introduction

Let our model be the Potthoff-Roy model:

(4.0.1) X = FizFpt

where X is a cxN matrix of observations, F, is a known cxp

|
matrix, = is an unknown pxm parameter matrix, F2 is a known
mxN (N 3_m) matrix and E is a cxN error matrix whose columns
are distributed independently with a normal distribution having
mean vector 0 and covariance matrix 02-1C (02 is unknown). In
this chapter we will be concerned with testing

(4.0.2) Hg: Uj=Fy=ab versus Hy: Uy=F3 # ab,

where U1 is an unknown rxp matrix, F3 is a known mxk (m > k)
matrix, a is an unknown rxs matrix and b is a known sxk matrix.

In Section 4.1, we derive the likelihood ratio test statistic

for H0 versus Hl‘ In Section 4.2, we find the asymptotic
distribution of the roots needed in the likelihood ratio

criterion. In Section 4.3, we use the asymptotic distributions

of the likelihood ratio test statistic to get asymptotic tests of
Hy versus Hy. In Scection 4.4, we show the tests from the preceding

section are consistent.




4.1. Likelihood Ratio Test Statistic

In this section we find the 1ikelihood ratio test of

HO: U].=F3 = ab versus H]: U]EF3 # ab, wher. our model is given by

(4.1.1) K= F]EF2+E.

A1l variables are defined in the introduction to this chapter. Our

result can be summarized in the following theorem.

Theorem 4.1.1. If our model is given by (4.1.1) and we wish to

test the hypothesis Ho: U]zF3 = ab versus H]: U]sF3 # ab, then the

likelihood ratio test statistic is

' ' “1ey ' =1 ' cN
e tr(XK* -F (F3F,) T FIXFA(F,F8) TR X*) 2

£ -1 ’
B attrO0=F (F2E ) VEIXEL (FL ) T X
R, 1(F1Fy) TFXFa(FoFa) F,

where A is ith largest eigenvalue of M, and

= 1 ' '] [} |
M= X1F4(Ik-d (dd*) d)F4Xf s
'%‘ ' [} 1\"2

Xy = (F]F]) ~F]XF2(F2F2) :

i
2

- |'A ' 1'1
g = (FoF3) "F3(F3(F,F3) “Fa) %,

)",

o,
\

-y [ ']
= b(r3(F2F2) F3
Proof. We need the maximum value of the likelihood when H0 is true
and when H] is true. In Chapter 3, we derived the MLE's of U], S
and 02 when the HO is true (see Theorem 3.2.3). If we substitute

these estimators into the likelihood we get:




9,

max L = (2n0

0
= (2 )‘2 CN(GZ)-Z CN ":% cN
- -3
= (2n)7% N2 CN[N%'( E AgHtr(X5Xs' )+tr(X3Xs') +
i=p-r+]
tr(xgxg' )12 N,
(a.1.2) = (2ve} = CN[ ( E xi+tr(xx'-rl(FiF])']FiXFé(FZFé)"

i=p-r+l

£,

where A is the ith largest root of M, and M and the variables which
define it are given‘in Theorem 4.1.1. For definitions of
X§, X§, Xz, see Section 3.1.

We now get the maximum value of the likelihood when the
alternative is true. When the alternative is true, our model is
just X = F]EF2+E with no restrictions on =. The columns of E have
the same distribution as under HO‘ The 1ikelihood function is

2
oy 20 (tr(X-F,=F,)(X-F,=F,)")
(4.1.3) L(X,z,0%) = (2n02)"% Ng * L i A
If we use standard multivariate regression procedures, we

get that the MLE of = is

1 >

(4.1.4) = (F}F;)” F XF3(FF )".

The MLE of 02 is also easy to get:

(.1.5) 6% = g tr(X-FyF) (X-F 5F,)",

TFx!

el (XX = (F1Fp) TTRXF5(FoF ) TTEX) .




When we substitute (4.1.5) (4.1.4) into (4.1.3), we get that the
maximum value of the likelihood when the alternative is true is
2 -2 cN _l_ [ t =Tes ' 1yl 'éCN
(4.1.6) mﬁ: L= (2me) < [Nc tr(XXx -F](F]F]) FIXFZ(FZFZ) FZX')] 2
If we combine (4.1.2) and (4.1.6) we will get the likelihood
ratio test statistic of H0 versus H]:

max L

(] (] ‘] (] ] 1 '] [] ACN
1 max L g R o 2N

i=p-r+l

Q.E.D.

Remark. It is clear that the likelihood ratio test statistic is

a function of

= ' ' '] 1 1 ' '] [ £ 'Z/CN
A2 = E Ai/[tr(XX -F](F]F]) F]XFZ(FZFZ) F2X )] = A] -1.

i=p-r+]
The numerator and denominator of the above expression are independent
since E Ai is a function of X;, the denominator is a function of
i=p-r+l

X5, X%, and X3, and X} is independent X%, X*

3 and XE (see Section

3.1 for definitions of x;, Xg, and Xz).

Remark II. The likelihood function can be made arbitrarily large

if Fyo= Ip and F, = I, by taking S = X and of = € where € is an
arbitrarily small positive number. Because of this, there does not
exist a test of the hypothesis Up=*F, = ad versus U,=*F # od in the
reduced model. What causes the problem is that under the alternative

hypothesis, there is nothing left to estimate 02 after we fit =. We




1

::) will therefore assume that 1im Nc-mp = = when we test !

N->o

U]sF3 = ab versus U]:F3 # ab.

4.2. Asymptotic Distribution of the Roots

In this section, we find the asymptotic distribution of the
roots needed in the likelihood ratio tests. We are interested in

the r smallest roots of
IM-AIpl = 0’

where

- ] ] '] ] '
(4.2.1) M= XfF4(Ik-d (dd') d)F4x7 s
It is helpful to work with the r smallest roots of
Q |(Noz)“M-¢*1p[ = 0.

It should be noted that ¢* = (ch)']A.
We now prove a useful lemma which is similar to Lemma 1 of

Chapter 2.

Lemma 1. Let our model and hypothesis be given by

X = F]EF2+E,

U]EF3 = ab,
where X, F], =l Fz, E, U], F3, a, and b are defined in the introduction
of this chapter. The roots of

(4.2.2) |(No®)™!

M- %I | =0,




TR

where M is given by (4.2.1) have the same distribution as the roots of

(4.2.3) IN']U*U*+N'$C+DO-¢*IPI = 0,

where

Cl,p -r Ei
C = : : ;
’p gl Es L
i .0
Chnt = "Yhy “ hth ¥ "Ynen Uppeo
Ug,p-r+1
En = "o | YRp-re2 |
UR.p
1 0 Y (0]
Do ={ . o Sl
6 0 0

and YiN is the ith largest eigenvalue of
(No2) "V (=*F (1-d* (dd*) " 1d)F =%"),

and U* is a pxk-s matrix whose columns have independent normal

distributions with mean vector 0 and covariance matrix Ip.

Proof. First, consider

-3 -3
Xy = (FiFq) 2FiXF5(F,F5) 2.
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When we take the square root (negative square root) of a matrix, it ‘$
is always the unique symmetric square root (negative square root).
The columns of XT are independently normally distributed with

covariance matrix oZ-Ip. The mean of Xf is
2 2
= = ! 2= 1\2
=¥ = (F3F JR=(F Fa)E.
Now consider 0'1X7F4, where

= ' '% ' T -3
Fp = (FoF5) 2F5(F4(F,F3) ™ Fa) 72,

1
X’]"F4

is distributed independently with a normal distribution having

Since F4 is a column ortﬁogona] matrix, each column of o

covariance matrix Ip. Next consider o"]X’fF4V6 where V6 is a

matrix such that

VeVe = Ik-d'(dd')f‘d,

VeVs = Iy 6

_S’
d = b(FL(F,F3) TR
3V 22 < S
Since VG is a column orthogonal matrix, each column of o']XfF4V6
(which is pxk-s) is distributed with an independent normal distri-
bution having covariance matrix Ip. The mean of 0-]XTF4V6 is
E(c™TX*F,V ) = o™ V=*F,V
1476 =476
Consider

- ol :

where I and r, are orthogonal matrices such that




Yy 6 ... 0

(Noz)']P]E*F4V6P2 wff O ST !
o' e A
s 2h 0

and YiN is the ith largest eigenvalue of

(oZN)']s*F4V6VéF'5*'=(02N)'15*F4(Ik-d'(dd')']d)F&s*'.

It should be noted that the r smallest eigenvalues of the above

expression equal 0 by our hypothesis. We may write (4.2.2) the

following way:
[(No2)H - "1 = lu’]uu'-¢*1p| = 0.
Finally, we make the following substitution. Let
u* = U-o']r]z*F4v5r2.
Then each column of U* has a normal distribution with mean vec
0 and covariance matrix Ip. We also have
UU' = U*U*'+/F C+Dy,
where C and D, are defined in the statement of the lemma. The
lemma now follows.
At this point we separate into threa cases

Case 1: k is fixed;
Case 2: t] #1;

Case 3: k goes to infinity as N does, t] =1;

tor

k..
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where t, = lim (N-k+s)N']. We always assume that r (the number of
N->co
rows of U2), p (the number of rows in =), and s (the row rank of
b and d) are fixed quantities.
For each case, we now present important results about the
asymptotic distribution of the roots. For Case 1, we have the §
following theorem:
Theorem 4.2.1. Assume that k is fixed. Let v = Ai(oz)-] = ¢T-N,
E
where ¢% is the ith largest root of [(Noz)']M-¢*Ipl = 0.
Then the 1imiting distribution of (vp-r+1’vp-r+2""’vp) is :
p = g \)]-/2
gir(k-s-pir) gro | yBl(k-s-p-1) i=p-r+l
i=p-r+l
Y‘ -I 'l : E
M T(5(k-s-ptr-1-1))1(5(r+1-1)) i
i=1 ﬂ
p p
n n (v.-vn)
i=p-r+l j=i+l
Proof. By Lemma 1, we only have to consider the distribution of ;
the r smallest roots (¢$ = j=p-r+l,p-r+2,...,p) of

P !
(4.2.4) [N Turur N ECap-e*1 | = 0,

where C, U*, and D0 are defined in Lemma 1.
For Case 1 we can utilize the proof given in lisu [1940].

Equation (17) in Hsu is identical to our equation (4.2.4) with

the following correspondences:




Hsu (17 (4.2.3.)

A Ury*'

c C

u 0

D ¢»*IS-D0
P!

v W=

A11 that we have to do is follow the steps in Hsu's proof. Q.E.D.

Remark. The distribution of the roots given in Theorem 4.2.1 is the
same as the joint distribution of Py where fs is the ith largest root

of
|IB - oIl =0

and B is defined by

k-s-pt+r

B = u.u;

i=1 11

where the u; are independently distributed with a normal distribution
with mean vector 0 and covariance matrix Ir.

For Case 2 and Case 3, we make the following assumptions.

Assumption 1. The matrix
(4.2.5) (CZN)-]=*F (1 -d'(dd')-]d)F'=*’
S = SR 4°

converges to a finite matrix (02)']R of rank p-r.

Assumption 2. vy = yi+0(/ﬁ) where y.y is the ith largest

eigenvalue of (4.2.5) and v; is the ith largest eigenvalue of

(02)-]R.
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We now state and prove several theorems for Case 2.

Theorem 4.2.2. Assume that 1im (N-k)N'] =t # 1, and that
Nowo

Assumptions 1 and 2 hold. Let

e |
v; = (N¢$-k)(N~k) %5 i = p-r+l,p-r+2,...,p;

where ¢% is the ith largest eigenvalue of (Noz)']M. The limiting

distribution of (v .,vp) is the same as the distribution

p-r+1°Vp-r+2°"
of the r roots from

2
2 —
l(]/t]‘]) Q]‘ \)Irl = 0
where Q] has the r-dimensional matrix normal distribution (see

Lemma 2 of Chapter 2).

Proof. By Lemma 1, we only have to consider the distribution of the

r smallest roots (¢?N: i = p-r+l, p-r+2,...,p) of

a
(4.2.5) ‘N-]U*U*|+N-2C+Do’¢*lp! = 0,

where C, U*, and D0 are defined in Lemma 1.

-1

If we multiple each matrix inside (4.2.5) by N(N-k) ' and let

il -1
D, N(N-k) DO-N(N-k) ¢*Ip,

6 = N(N-K)"To%,
then (4.2.5) becomes

: T
| (N-K)~Tusur i (N-)7Te-D, | = .

The above equation is exactly the same as equation (2.2.12) with Z = 0.




He therefore may follow the proof of Theorem 2.2.2 with Z = 0. The

theorem is therefore proved. Q.E.D.
If we use Theorem 2 in Anderson [1951b], we have

Theorem 4.2.3. Assume 1im (N-k)N'] = t] # 1 and Assumptions 1 and 2

Noo

3 hold. Let

= (N S ' .
p; = (/F $3-/K); i = p-r+l, p-re2,...,p;

where ¢$ is the ith largest eigenvalue if (Noz)']M. The limiting

distribution of (pp_r+],pp_r+2,...,pp) is

r ]

e e

’ r -1 4=y PeYEl P P 2

2 r’Zt.n]r(-}—(rﬂﬁ))] b 1= n T (ogmp). :
]:

i=p-r+l j=i+l ! ;

We conclude with several theorems for Case 3.

Theorem 4.2.4. Assume that k >~ » as N » «, that 1im (N-k)N'] =1,

Noroo

and that Assumptions 1 and 2 hold. Let
= T
v; = (N k45 - N§F)Nk 25 1= p-rily Psrel, ... ps

where ¢¥ is the ith largest eigenvalue of (Noz)‘]M. The limiting il

distribution of (vp ,vp) is the distribution of the

-r+17Vp-re22 0
r roots of

Q - vIrI =0

where Q has the r-dimensional matrix normal distribution (see

Lemma 2 of Chapter 2).
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Proof. By Lemma 1, we only have to consider the distribution of

the r smallest roots (¢$: i = p-r+l,p-r+2,...,p) of
-1 ' "‘% =
(4.2.6) |N "U*U*'+N C+Do-¢*1pl = 0,

where C, U*, and D0 are defined in Lemma 1.

If we multiply each matrix inside (4.2.5) by N(N-k)'] and let

o
n

=1 -1
N(N-k) DO-N(N-k) ¢*Ip,

= N(N-K)To*,

-
1

then (4.2.5) becomes

2 =
| (N-k) ™ Tuuxe nE(N-k) T e+, | = 0.

The above equation is identical to equation (2.2.15) with Z = 0.
We may follow the proof of Theorem 2.2.4 with Z = 0 to get the

required result. Q.E.D.
Using Theorem 2 in Anderson [1951b], we have:

Theorem 4.2.5. Assume that k » = as N » «, that 1im (N-k)N'1 =1,

Nooo

and that Assumptions 1 and 2 hold. Let

N -%.
Yy = (NTE ¢$ - ﬁ%E)Nk 2y 1 = p=rtl, p-rt2,...,ps

where ¢? is the ith largest eigenvalue of (Noz)'lM. Then the limiting
distribution of (vp-r+1’vp-r+2""’vp) is

- Ve
r e i D

272 5 r(Hra1-1))37Te TP e 1 (vymv)-
i=1 i=p-r+1 j=i+

i1
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4.3. Asymptotic Tests of UyzFy=ab Versys U,zF,fab

In this section, we use the asymptotic distributions of the
smallest roots given in the proceding section to get the asymptotic
tests based on the likelihood ratio statistic derived in Theorem

4.1.1. We also use the following lemma:

Lemma 1. Let
(4.3  a's (02)'ltr(xx'-F,(FiF])"FixFé(FzFé)“sz').

i : ’
Then (Nc-mp) 2(e-(Nc-mp)) converges in law to a normal random variable
with mean 0 and variance 2. We also have that (Nc-mp)']e goes almost

surely to 1.

Proof. We have shown that 8 has a chi-square distribution with Nc-mp
degrees of freedom (see the end of Section 3.4). The lemma now

follows from standard theorems. Q.E.D.

By Theorem 4.1.1, the likelihood ratio test statistic is

-4cN
(A,+1) s

4

where

e,
i=p-r+l

-
n

A, is the ith largest eigenvalue of M, and 6 is defined by (4.3.1).

i
In terms of the eigenvalues (¢T,¢*,...,¢;) of (Noz)-]M we have

Ay = N E ¢%/0.
i=p-r+l

1
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We now break up our discussion of the asymptotic tests into
three parts which correspond to the three cases discussed in the

preceding section.

Part 1. Case 1: k fixed.

When k is fixed, we have the following theorem:

Theorem 4.3.1. If our model is given by (4.0.1), and we wish to

test the hypothesis HO: U]zF3 = ab versus Hl: Ule3 # ab when k is

fixed, then the asymptotic null distribution of
(cN-mp)a, = (ch-mp)(a72/Nor),

where A, is the likelihood ratio test statistic, is a chi-square
distribution with r(k-s-p+r) degrees of freedom. The a level

asymptotic test of H0 versus H] would be to reject H0 when

(c-mp) (172/M1) 5 5E y(1-a),

k-s-p+r
and do not reject otherwise, where xg(B) is the Bth fractile of a
chi square distribution with d degrees of freedom.

Proof: When k is fixed, the asymptotic distribution of N_E o*
can be easily obtained using the remark following TheoremIQ?ér;T
The limiting distribution of N_E ¢% is the same as the
distribution of 4

k-s-p+r

tr(B) - iZ] uiu%,

where u; are independently distributed with a normal distribution




W

m

having mean vector 0 and covariance matrix I Since each diagonal

k-s-p+r e
element of 'Z] uiu% has a chi-square distribution with k-s-p+r
'|=
degrees of freedom, and since there are r independent diagonal elements,

the distribution of the tr(B) is a chi-square distribution with
r(k-s-p+r) degrees of freedom. We conclude that the limiting distri-
bution of N.E 9% (for Case 1) is a chi-square distribution with
r(k-s-p-r) ;;g;;;l of freedom.

We know by Lemma 1 that 6/(Nc-mp) goes almost surely to one.

Since 6 and E ¢? are independent, we get that
i=p-r+l

(Ne-mp) (A;2/<N-1) = g ¢%3/(8/(Nc-mp))
i=p-r+l

has a limiting chi-square distribution with r(k-s-p+r) degrees of
freedom. Q.E.D.

Part 2. Case 2: ty = lim (N-K)N| # 1.

N->oo

When the number of parameters increases with the sample size in

such a way that t] = lim (N-k)N'1 # 1, we use the following theorem

Noreo

which gives us the needed asymptotic test:

Theorem 4.3.2. If our model is given by (4.0.1), and we wish to

test the hypothesis HO: U]5F3 = ab versus H]: U]EF3 # ab when
t] # 1, then the asymptotic null distribution of

My = (=P (Ne-pm)ny-kEr),

2r(Nc-pm)+2kr
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where Ay = Ay -1, and Ay s the likelihood ratio test statistic,
is a standard normal distribution. The a-level asymptotic test

would be to reject Ho when
Ry Bjags

and do not reject otherwise, where ZB is the B fractile of a standard

normal distribution.

Proof. Consider

(§ e

o i i=p-
k 2(Nc-pm)A2-k2r = 167(£:1pm§" - k°r,
b g0 o/ Che-pm)) 1)
= lep-rt
(4-3.2) = 9/(NC-pm)

Since 6/(Nc-pm) goes almost surely to one, we have that the

limiting distribution of
- <
K é(Nc-pm)Az-kar
is the limiting distribution of

(@.3.3) 5 ek B (o/ (Nc-pm))-1).
i=p-r+l

When t] # 1, the asymptotic distribution of

0 = (eosE T
’i'—'p-?"ﬂ i i=1 p'f‘+1

can be easily obtained from Theorem 4.2.2. The limiting distribution

of E ]v. is the same as the distribution of tr(l/t]-l)%Q], where
i=p-r+

1




8

13

Q] has an r dimensional matrix normal distribution. Since the
distribution of tr(]/t]-l)%ol is a normal distribution with mean
zero and variance 2r(1/t]-1), it follows that the limiting distribution

of

§ o mer-oxc?
i=p-r+]

is a normal distribution with mean 0 and variance 2r.

We also know from Lemma 1 that
-l
(Nc-pm) =#((6/(Nc-pm))-1)

is asymptotically distributed as a normal random variable with mean 0

and variance 2. We therefore have that
kEr((o/(Nc-pm))-1)
has a limiting normal distribution with mean 0 and variance
1im 2kr2/(Nc-pm).
N
If we combine the above three paragraphs and recall that 8
and _E ¢; are independent, we have that
-2 i
k™*(Nc-pm)A,-k=r
has a limiting normal distribution with mean 0 and variance
2r+2r2 1im k/(Nc-pm)
N->o

since

[2r+(2r2k/(Nc-pm)]']=(Nc-pm)/(2r(Nc-pm)+2kr2).

We have finally that

S AR .
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. i T : |
J (NP (kB (Nc-pm) -k )
2r(Nc-pm)+2kr
has a limiting normal distribution with mean O and variance 1.
Q.E.D.

Part 3. Case 3: k= as N> but t; = lim (N-k)N"' = 1.
N-m {
We conclude this section with a theorem which gives the ‘

asymptotic test of H0 versus H] for Case 3. ” |

Theorem 4.3.3. If our model is given by (4.0.1), and we wish to
test the hypothesis HO: U]5F3=ab versus H]: U]5F3fab when
Tim (N-k)/N = ty=landk »=as N>~ then the asymptotic null

N
distribution of

- =g e——

Ay = (Nc-pm)(2kr)"%A2-(kr/2)%,

-2/cN

where Ay = A] and A] is the likelihood ratio test statistic

——— -
ot

is a standard normal qistribution. The a-level asymptotic test would
be to reject Hy when A3 > Z(]_a), and do not reject otherwise, where

ZB is the Bth fractile of a standard normal distribution.

Proof. Consider

-2 2
Ay (Nc-pm) (2kr) 2A2-(kr/2)2,
N(Zkl")""é E ]¢;
i=p-r+ 4
B/(Nc-pm) & (kY‘/Z)z,

Nk ® § an (k203 (k2220 (07 (He-pm))-1)
- i=p-r+]

o/ (Nc-pm)




N

Since N ((e/(Nc-pm))-1) goes in law (by Lemma 1) to a normal random
variable with mean 0 and finite variance, and since for Case 3,

1im k/N = 0, we have that
Nooo

(k) %((6/ (N-pm))-1)

goes in law to a random variable which is constant at zero.

By Lemma 1, we may state that 6/(Nc-pm) goes almost surely to 1.
Since 6 and .E ¢$ are independent, we know that the asymptotic
distribution'gg-x;]is the, same as the asymptotic distribution of

(4.3.4) R R
i=p-r+l

For Case 3, the asymptotic distribution of the above expression
can be easily obtained from Theorem 4.2.4. Since the limiting

distribution of

A 2
v; = (N/N-k) [Nk fz¢;-rk2]
i=p-r+]

is the same as the distribution of tr Q where Q has the r

dimensional matrix normal distribution, g v; has a Timiting
i=p-r+]
normal distribution with mean 0 and variance 2r. Since

lim Eﬁﬁ = 1, we can conclude that the limiting distribution of

Nooo

(4.3.4) is a standard normal distribution. Q.E.D.

4.4, Consistency of the Tests

In this section, we discuss the consistency of the tests from °
the preceding section. A test is consistent if the power of a test

goes to one as the sample size increases when a fixed alternative

is assumed to be true.
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We now give a description of what our fixed alternative
will be. For each N, let us pick = = Zon® SO that the rth
smallest eiganvalue of

-1

- (] 1"] (]
(4.4.1) N =6NF4(Ik-d (dd')” "d)F =%

470N’
is a fixed positive number. F4 and d are defined in Theorem 4.1.1,
and |

v = (FiF1) =on(FaF3) -
This is a very reasonable definition of fixed alternative. We also
assume that the matrix given by (4.4.1) converges to a finiie matrix

R.

For Case 1, we have the following theorem:

Theorem 4.4.1. The asymptotic test given in Theorem 4.3.1 (Case 1:

k fixed) is consistent.

Proof. The test statistic given in Theorem 4.3.1 is

(Nc-mp)A2 (Nc-mp)(A;Z/CN-l)

N E ¢%/(0/(Nc-mp))

i=p-r+]

where o is given by (4.3.1) and ¢$ are the eigenvalues of M (see
Theorem 4.1.1). By Lemma 1 of Section 3.2, 8/(Nc-mp) goes almost
surely to one. By i) of Theorem 3.4.3, we have that

1

N

M = N']X*F4(Ik-d'(dd')']d)F&X*'
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- where t, = lim (N-k)N']. Since

¥ 1. Therefore, in this case, M goes almost surely

goes almost surely to R+(1-t])021
k is fixed, t
to R. Since the eigenvalues of a matrix are continuous functions of
that matrix, the rth smallest eigenvalue of M goes almost surely to
the rth smallest eigenvalue of R. For our fixed alternative (see
the paragraph preceding this theorem), R = RO and the rth smallest
eigenvalue of R0 is some positive number. We can conclude that

N¢ goes almost surely to positive infinity. Therefore (Nc-mp) Ay

*
p-r+l
goes almost surely to positive infinity. If we apply Theorem 2.4.1,

our theorem (Theorem 4.4.1) follows. Q.E.D.

For Case 2, t] # 1, we have a similar result:

Theorem 4.4.2. The asymptotic test given in Theorem 4.3.2 (Case 2)

is consistent.

Proof. Let us consider
e 2 L

% - 1 (No*-k)k™2-k=r[(0/(Nc-pm))-1]

k'e(Nc-pm)Az-k2r s 1zportl

8/ (Nc-pm)

which is equation (4.3.2). By Lemma 1, e/ch-pm) goes almost surely

toc 1. By 1) of Theorem 3.4.3 we have that

NTM = NTTXAF (1 -d" (dd") TP

, where t, = lim (N-k)N']. Since
p 1 e

the eigenvalues of a matrix are continuous functions of that matrix,

goes almost surely to R+(1-t])021

the rth smallest eigenvalues of M goes almost surely to the rth




smallest eigenvalue of R. For our fixed alternative (see the
paragraph preceding Theorem 4.4.1), R = RO and the rth smallest
eigenvalue of N']M goes almost surely to a quantity greater than
(1-t])02. We therefore have that ¢;-r+1 goes almost surely to

a quantity greater than I-t], and that ¢; -% goes almost surely

-r+l T

to a quantity greater than 0. We conclude that

-2
E (No%-k)k™*
j=p-r+l

goes almost surely to positive infinity. hs then goes to positive
infinity. We now may apply Theorem 2.4.1 to complete the proof of
this theorem. Q.E.D.

For Case 3, we have the following theorem.

Theorem 4.4.3. The asymptotic test described in Theorem 4.3.3 is

consistent.

Proof. We omit a proof since the proof is similar to the proofs

for Theorem 4.4.1 and Theorem 4.4.2.
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| \N“l'hls report considers the multivariate linear regression model X = F; F2

+ E, where X is a ¢ x N matrix of observatmns, F* is a known ¢ x p matrix
of covariates, Fz is a known m x N design matnx (contammg values of .

independent variables in the regression), and = 1s an unknown p * m matrix of I

regression coefficients assumed under a null hypothesis Hg‘ to satisfy a system—» [(7°%
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of linear restraints of the form HS: U1 F3 = ab, where FS: mzx k and
or =

b: s x h are known matrices, and U;: r xpand a: r xs (s ©r < p)are
unknown matrices of restraint coefflcients. The error matrix E: Eix N is
assumed to have columns which are statistically independent, multivariate
nsrmal random vectors with common mean vector 0 and common unknown matrix
z 5 > mmQ ,
Chapte s\l and 2 consider the no-covariate case; that is, c=p, Fl = Ip

U1 = B, F3 = Ik,_m = k. In Chapter 1, the maximum likelihood estimators
(MLE's) of the unknown parameters B, «, =, and I are found (under the ass-
umption that H, is true). Consistency of these estimators is discussed and
~several specia? cases are presented. In Chapter 2, the likelihood ratio

test statistic for testing H, against general alternatives is derived, and

a sequence of asymptotically consistent tests is obtained. Here, "asymptotic"
means that N - = and that k, the number of columns of =, may or may not
increase to infinity as N + «,

Chapters 3 and 4 obtain corresponding MLE's and asymptotically consistent

tests of H0 in the general case, but under the additional assumption that

I = oZIc, where 0° > 0 is unknown.
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